These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 30307860)

  • 1. In-Phase and Quadrature Analysis for Amplitude and Frequency Modulations Due to Vibrations on a Surface-Acoustic-Wave Resonator.
    Maskay A; Hummels DM; Pereira Da Cunha M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Jan; 66(1):91-100. PubMed ID: 30307860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling and Experimental Analysis on the Temperature Response of AlN-Film Based SAWRs.
    Chen S; You Z
    Sensors (Basel); 2016 Jul; 16(8):. PubMed ID: 27483286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microphonic sensitivity of surface-acoustic-wave resonators.
    Kolner BH
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(3):365-71. PubMed ID: 18290161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Impedance-Loaded Orthogonal Frequency-Coded SAW Sensor for Passive Wireless Sensor Networks.
    Dai X; Fang L; Zhang C; Sun H
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32231025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface acoustic wave (SAW) vibration sensors.
    Filipiak J; Solarz L; Steczko G
    Sensors (Basel); 2011; 11(12):11809-32. PubMed ID: 22247694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remote vibration measurement: a wireless passive surface acoustic wave resonator fast probing strategy.
    Friedt JM; Droit C; Ballandras S; Alzuaga S; Martin G; Sandoz P
    Rev Sci Instrum; 2012 May; 83(5):055001. PubMed ID: 22667642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel wireless and temperature-compensated SAW vibration sensor.
    Wang W; Xue X; Huang Y; Liu X
    Sensors (Basel); 2014 Nov; 14(11):20702-12. PubMed ID: 25372617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement.
    Friedt JM; Droit C; Martin G; Ballandras S
    Rev Sci Instrum; 2010 Jan; 81(1):014701. PubMed ID: 20113119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wireless sensing using oscillator circuits locked to remote high-Q SAW resonators.
    Pohl A; Ostermayer G; Seifert F
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1161-8. PubMed ID: 18244275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Graphene oxide decorated multi-frequency surface acoustic wave humidity sensor for hygienic applications.
    Jung SI; Jang IR; Ryu C; Park J; Padhan AM; Kim HJ
    Sci Rep; 2023 Apr; 13(1):6838. PubMed ID: 37100930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-Temperature Variation of Acoustic Velocity in PDMS for High-Frequency Applications.
    Streque J; Rouxel D; Talbi A; Thomassey M; Vincent B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 May; 65(5):862-869. PubMed ID: 29733288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An interrogation unit for passive wireless SAW sensors based on fourier transform.
    Hamsch M; Hoffmann R; Buff W; Binhack M; Klett S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Nov; 51(11):1449-56. PubMed ID: 15600089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Femtometer-amplitude imaging of coherent super high frequency vibrations in micromechanical resonators.
    Shao L; Gokhale VJ; Peng B; Song P; Cheng J; Kuo J; Lal A; Zhang WM; Gorman JJ
    Nat Commun; 2022 Feb; 13(1):694. PubMed ID: 35121745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Materials, Design, and Characteristics of Bulk Acoustic Wave Resonator: A Review.
    Liu Y; Cai Y; Zhang Y; Tovstopyat A; Liu S; Sun C
    Micromachines (Basel); 2020 Jun; 11(7):. PubMed ID: 32605313
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell suspension concentration monitoring by using a miniaturized serial high frequency SAWR sensor.
    Li J; Feng H; Fang Y
    Bioengineered; 2015; 6(6):351-6. PubMed ID: 26588250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A laser probe based on a Sagnac interferometer with fast mechanical scan for RF surface and bulk acoustic wave devices.
    Hashimoto KY; Kashiwa K; Wu N; Omori T; Yamaguchi M; Takano O; Meguro S; Akahane K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jan; 58(1):187-94. PubMed ID: 21244986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trends and Applications of Surface and Bulk Acoustic Wave Devices: A Review.
    Yang Y; Dejous C; Hallil H
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kiwi fruit (Actinidia chinensis) quality determination based on surface acoustic wave resonator combined with electronic nose.
    Wei L; Guohua H
    Bioengineered; 2015; 6(1):53-61. PubMed ID: 25551334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical sensor based on surface acoustic wave resonator using Langmuir-Blodgett film.
    Nomura T; Takebayashi R; Saitoh A
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1261-5. PubMed ID: 18244288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring Low-Loss Surface Acoustic Wave Devices on Heterogeneous Substrates.
    Wu J; Zhang S; Zhang L; Zhou H; Zheng P; Yao H; Li Z; Huang K; Wu T; Ou X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Aug; 69(8):2579-2584. PubMed ID: 35653448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.