BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 30307879)

  • 1. STRAINet: Spatially Varying sTochastic Residual AdversarIal Networks for MRI Pelvic Organ Segmentation.
    Nie D; Wang L; Gao Y; Lian J; Shen D
    IEEE Trans Neural Netw Learn Syst; 2019 May; 30(5):1552-1564. PubMed ID: 30307879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deeply supervised 3D fully convolutional networks with group dilated convolution for automatic MRI prostate segmentation.
    Wang B; Lei Y; Tian S; Wang T; Liu Y; Patel P; Jani AB; Mao H; Curran WJ; Liu T; Yang X
    Med Phys; 2019 Apr; 46(4):1707-1718. PubMed ID: 30702759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SDResU-Net: Separable and Dilated Residual U-Net for MRI Brain Tumor Segmentation.
    Zhang J; Lv X; Sun Q; Zhang Q; Wei X; Liu B
    Curr Med Imaging; 2020; 16(6):720-728. PubMed ID: 32723244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D APA-Net: 3D Adversarial Pyramid Anisotropic Convolutional Network for Prostate Segmentation in MR Images.
    Jia H; Xia Y; Song Y; Zhang D; Huang H; Zhang Y; Cai W
    IEEE Trans Med Imaging; 2020 Feb; 39(2):447-457. PubMed ID: 31295109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance improvement of weakly supervised fully convolutional networks by skip connections for brain structure segmentation.
    Sugino T; Roth HR; Oda M; Kin T; Saito N; Nakajima Y; Mori K
    Med Phys; 2021 Nov; 48(11):7215-7227. PubMed ID: 34453333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images.
    Tong N; Gou S; Yang S; Cao M; Sheng K
    Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SEMI-SUPERVISED LEARNING FOR PELVIC MR IMAGE SEGMENTATION BASED ON MULTI-TASK RESIDUAL FULLY CONVOLUTIONAL NETWORKS.
    Feng Z; Nie D; Wang L; Shen D
    Proc IEEE Int Symp Biomed Imaging; 2018 Apr; 2018():885-888. PubMed ID: 30344892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ARPM-net: A novel CNN-based adversarial method with Markov random field enhancement for prostate and organs at risk segmentation in pelvic CT images.
    Zhang Z; Zhao T; Gay H; Zhang W; Sun B
    Med Phys; 2021 Jan; 48(1):227-237. PubMed ID: 33151620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-to-binary network (MTBNet) for automated multi-organ segmentation on multi-sequence abdominal MRI images.
    Zhao X; Huang M; Li L; Qi XS; Tan S
    Phys Med Biol; 2020 Aug; 65(16):165013. PubMed ID: 32428898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fully connected network with multi-scale dilation convolution module in evaluating atrial septal defect based on MRI segmentation.
    Chen H; Yan S; Xie M; Ye Y; Ye Y; Zhu D; Su L; Huang J
    Comput Methods Programs Biomed; 2022 Mar; 215():106608. PubMed ID: 35063713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fully automated cardiac MRI segmentation using dilated residual network.
    Ahmad F; Hou W; Xiong J; Xia Z
    Med Phys; 2023 Apr; 50(4):2162-2175. PubMed ID: 36395472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. P-ResUnet: Segmentation of brain tissue with Purified Residual Unet.
    Niu K; Guo Z; Peng X; Pei S
    Comput Biol Med; 2022 Dec; 151(Pt B):106294. PubMed ID: 36435055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images.
    Chen H; Dou Q; Yu L; Qin J; Heng PA
    Neuroimage; 2018 Apr; 170():446-455. PubMed ID: 28445774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully automated multiorgan segmentation of female pelvic magnetic resonance images with coarse-to-fine convolutional neural network.
    Zabihollahy F; Viswanathan AN; Schmidt EJ; Morcos M; Lee J
    Med Phys; 2021 Nov; 48(11):7028-7042. PubMed ID: 34609756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BiFTransNet: A unified and simultaneous segmentation network for gastrointestinal images of CT & MRI.
    Jiang X; Ding Y; Liu M; Wang Y; Li Y; Wu Z
    Comput Biol Med; 2023 Oct; 165():107326. PubMed ID: 37619324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D whole brain segmentation using spatially localized atlas network tiles.
    Huo Y; Xu Z; Xiong Y; Aboud K; Parvathaneni P; Bao S; Bermudez C; Resnick SM; Cutting LE; Landman BA
    Neuroimage; 2019 Jul; 194():105-119. PubMed ID: 30910724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain image segmentation of the corpus callosum by combining Bi-Directional Convolutional LSTM and U-Net using multi-slice CT and MRI.
    Wong KKL; Xu W; Ayoub M; Fu YL; Xu H; Shi R; Zhang M; Su F; Huang Z; Chen W
    Comput Methods Programs Biomed; 2023 Aug; 238():107602. PubMed ID: 37244234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-scale Selection and Multi-channel Fusion Model for Pancreas Segmentation Using Adversarial Deep Convolutional Nets.
    Li M; Lian F; Guo S
    J Digit Imaging; 2022 Feb; 35(1):47-55. PubMed ID: 34921356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Road crack segmentation using an attention residual U-Net with generative adversarial learning.
    Hu X; Yao M; Zhang D
    Math Biosci Eng; 2021 Nov; 18(6):9669-9684. PubMed ID: 34814362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.