BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 30307943)

  • 1. A gene expression comparison of Trypanosoma brucei and Trypanosoma congolense in the bloodstream of the mammalian host reveals species-specific adaptations to density-dependent development.
    Silvester E; Ivens A; Matthews KR
    PLoS Negl Trop Dis; 2018 Oct; 12(10):e0006863. PubMed ID: 30307943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interspecies quorum sensing in co-infections can manipulate trypanosome transmission potential.
    Silvester E; Young J; Ivens A; Matthews KR
    Nat Microbiol; 2017 Nov; 2(11):1471-1479. PubMed ID: 28871083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential infection of tsetse flies with Trypanosoma congolense and Trypanosoma brucei.
    Gibson W; Ferris V
    Acta Trop; 1992 Apr; 50(4):345-52. PubMed ID: 1356306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide dissection of the quorum sensing signalling pathway in Trypanosoma brucei.
    Mony BM; MacGregor P; Ivens A; Rojas F; Cowton A; Young J; Horn D; Matthews K
    Nature; 2014 Jan; 505(7485):681-685. PubMed ID: 24336212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shape-shifting trypanosomes: Flagellar shortening followed by asymmetric division in Trypanosoma congolense from the tsetse proventriculus.
    Peacock L; Kay C; Bailey M; Gibson W
    PLoS Pathog; 2018 May; 14(5):e1007043. PubMed ID: 29772025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA-Seq analysis validates the use of culture-derived Trypanosoma brucei and provides new markers for mammalian and insect life-cycle stages.
    Naguleswaran A; Doiron N; Roditi I
    BMC Genomics; 2018 Apr; 19(1):227. PubMed ID: 29606092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recirculation of Trypanosoma brucei brucei in cattle after T. congolense challenge by tsetse flies.
    Van den Bossche P; De Deken R; Brandt J; Seibou B; Geerts S
    Vet Parasitol; 2004 May; 121(1-2):79-85. PubMed ID: 15110405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trypanosoma congolense: Molecular Toolkit and Resources for Studying a Major Livestock Pathogen and Model Trypanosome.
    Gibson W; Kay C; Peacock L
    Adv Parasitol; 2017; 98():283-309. PubMed ID: 28942771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comment on 'Unexpected plasticity in the life cycle of
    Matthews KR; Larcombe S
    Elife; 2022 Feb; 11():. PubMed ID: 35103595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of Trypanosoma brucei Total and Polysomal mRNA during Development within Its Mammalian Host.
    Capewell P; Monk S; Ivens A; Macgregor P; Fenn K; Walrad P; Bringaud F; Smith TK; Matthews KR
    PLoS One; 2013; 8(6):e67069. PubMed ID: 23840587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endopeptidase variations among different life-cycle stages of African trypanosomes.
    Mbawa ZR; Gumm ID; Fish WR; Lonsdale-Eccles JD
    Eur J Biochem; 1991 Jan; 195(1):183-90. PubMed ID: 1991468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide RNAi selection identifies a regulator of transmission stage-enriched gene families and cell-type differentiation in Trypanosoma brucei.
    Rico E; Ivens A; Glover L; Horn D; Matthews KR
    PLoS Pathog; 2017 Mar; 13(3):e1006279. PubMed ID: 28334017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trypanosoma congolense: In Vitro Culture and Transfection.
    Kay C; Peacock L; Gibson W
    Curr Protoc Microbiol; 2019 Jun; 53(1):e77. PubMed ID: 30707507
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A short bifunctional element operates to positively or negatively regulate ESAG9 expression in different developmental forms of Trypanosoma brucei.
    Monk SL; Simmonds P; Matthews KR
    J Cell Sci; 2013 May; 126(Pt 10):2294-304. PubMed ID: 23524999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in genome editing of bloodstream forms of Trypanosoma congolense using CRISPR-Cas9 ribonucleoproteins: Proof of concept.
    Minet C; Chantal I; Berthier D
    Exp Parasitol; 2023 Sep; 252():108589. PubMed ID: 37516291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorylation of eIF2α on Threonine 169 is not required for Trypanosoma brucei cell cycle arrest during differentiation.
    Avila CC; Peacock L; Machado FC; Gibson W; Schenkman S; Carrington M; Castilho BA
    Mol Biochem Parasitol; 2016; 205(1-2):16-21. PubMed ID: 26996431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Route of inoculation influences Trypanosoma congolense and Trypanosoma brucei brucei virulence in Swiss white mice.
    Ndungu K; Thungu D; Wamwiri F; Mireji P; Ngae G; Gitonga P; Mulinge J; Auma J; Thuita J
    PLoS One; 2019; 14(6):e0218441. PubMed ID: 31220132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-cell transcriptomic analysis of bloodstream Trypanosoma brucei reconstructs cell cycle progression and developmental quorum sensing.
    Briggs EM; Rojas F; McCulloch R; Matthews KR; Otto TD
    Nat Commun; 2021 Sep; 12(1):5268. PubMed ID: 34489460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bloodstream form pre-adaptation to the tsetse fly in Trypanosoma brucei.
    Rico E; Rojas F; Mony BM; Szoor B; Macgregor P; Matthews KR
    Front Cell Infect Microbiol; 2013; 3():78. PubMed ID: 24294594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cold shock and regulation of surface protein trafficking convey sensitization to inducers of stage differentiation in Trypanosoma brucei.
    Engstler M; Boshart M
    Genes Dev; 2004 Nov; 18(22):2798-811. PubMed ID: 15545633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.