These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30308213)

  • 1. Development of a high throughput optical density assay to determine fungicide sensitivity of oomycetes.
    Hunter S; McDougal R; Clearwater MJ; Williams N; Scott P
    J Microbiol Methods; 2018 Nov; 154():33-39. PubMed ID: 30308213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence of Phosphite Tolerance in
    Hunter S; McDougal R; Williams N; Scott P
    Plant Dis; 2023 Feb; 107(2):393-400. PubMed ID: 36089692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for rapid adaptive evolution of tolerance to chemical treatments in Phytophthora species and its practical implications.
    Hunter S; Williams N; McDougal R; Scott P; Garbelotto M
    PLoS One; 2018; 13(12):e0208961. PubMed ID: 30532144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and fungicidal activity of ethaboxam against Oomycetes.
    Kim DS; Chun SJ; Jeon JJ; Lee SW; Joe GH
    Pest Manag Sci; 2004 Oct; 60(10):1007-12. PubMed ID: 15481827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A High-Throughput Microtiter-Based Fungicide Sensitivity Assay for Oomycetes Using
    Noel ZA; Rojas AJ; Jacobs JL; Chilvers MI
    Phytopathology; 2019 Sep; 109(9):1628-1637. PubMed ID: 31017530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of fungicides enestroburin and SYP1620 on their inhibitory activities to fungi and oomycetes and systemic translocation in plants.
    Liu P; Wang H; Zhou Y; Meng Q; Si N; Hao JJ; Liu X
    Pestic Biochem Physiol; 2014 Jun; 112():19-25. PubMed ID: 24974113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteomic analysis revealed that the oomyceticide phosphite exhibits multi-modal action in an oomycete pathosystem.
    Andronis CE; Jacques S; Lopez-Ruiz FJ; Lipscombe R; Tan KC
    J Proteomics; 2024 Jun; 301():105181. PubMed ID: 38670258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Oomycota Fungicides With Activity Against
    Belisle RJ; Hao W; McKee B; Arpaia ML; Manosalva P; Adaskaveg JE
    Plant Dis; 2019 Aug; 103(8):2024-2032. PubMed ID: 31246147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity of the novel fungicide oxathiapiprolin against plant-pathogenic oomycetes.
    Miao J; Dong X; Lin D; Wang Q; Liu P; Chen F; Du Y; Liu X
    Pest Manag Sci; 2016 Aug; 72(8):1572-7. PubMed ID: 26577849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resistance to Potassium Phosphite in
    Hao W; Förster H; Adaskaveg JE
    Plant Dis; 2021 Apr; 105(4):972-977. PubMed ID: 32886038
    [No Abstract]   [Full Text] [Related]  

  • 11. Temperature and Fungicide Sensitivity in Three Prevalent
    Scagel CF; Weiland JE; Beck BR; Mitchell JN
    Plant Dis; 2023 Oct; 107(10):3014-3025. PubMed ID: 36880863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fungicide Sensitivity of
    Weiland JE; Scagel CF; Benedict C; DeVetter LW; Beck BR
    Plant Dis; 2024 Jul; 108(7):2104-2110. PubMed ID: 38468135
    [No Abstract]   [Full Text] [Related]  

  • 13. Defining the phosphite-regulated transcriptome of the plant pathogen Phytophthora cinnamomi.
    King M; Reeve W; Van der Hoek MB; Williams N; McComb J; O'Brien PA; Hardy GE
    Mol Genet Genomics; 2010 Dec; 284(6):425-35. PubMed ID: 20882389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity of OSBPI fungicide fluoxapiprolin against plant-pathogenic oomycetes and its systemic translocation in plants.
    Li C; Tian S; Fu Y; Li Y; Miao J; Peng Q; Liu X
    Pestic Biochem Physiol; 2024 Sep; 204():106085. PubMed ID: 39277398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenotypic Characterization of Genetically Distinct Phytophthora cinnamomi Isolates from Avocado.
    Belisle RJ; McKee B; Hao W; Crowley M; Arpaia ML; Miles TD; Adaskaveg JE; Manosalva P
    Phytopathology; 2019 Mar; 109(3):384-394. PubMed ID: 30070969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PRE-PLANTING TREATMENTS WITH PHOSPHITE-BASED PRODUCTS AGAINST DIFFERENT FOLIAR AND SOIL-BORNE PATHOGENS OF VEGETABLE CROPS.
    Gilardi G; Demarchi S; Ramon I; Gullino ML; Garibaldi A
    Commun Agric Appl Biol Sci; 2015; 80(3):445-51. PubMed ID: 27141741
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Weiland JE; Scagel CF; Grünwald NJ; Davis EA; Beck BR
    Plant Dis; 2021 May; 105(5):1505-1514. PubMed ID: 33337240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphite Is More Effective Against Phytophthora Crown Rot and Leather Rot Caused by
    Marin MV; Baggio JS; Melo PP; Peres NA
    Plant Dis; 2023 May; 107(5):1602-1608. PubMed ID: 36415890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic profile of the plant-pathogenic oomycete Phytophthora capsici in response to the fungicide pyrimorph.
    Pang Z; Chen L; Miao J; Wang Z; Bulone V; Liu X
    Proteomics; 2015 Sep; 15(17):2972-82. PubMed ID: 25914214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translocation of phosphite encourages the protection against Phytophthora infestans in potato: The efficiency and efficacy.
    Huang Z; Carter N; Lu H; Zhang Z; Wang-Pruski G
    Pestic Biochem Physiol; 2018 Nov; 152():122-130. PubMed ID: 30497702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.