These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 30308275)

  • 1. Methodology to estimate the break force of pharmaceutical tablets with curved faces under diametrical compression.
    Al-Sabbagh M; Polak P; Roberts RJ; Reynolds GK; Sinka IC
    Int J Pharm; 2019 Jan; 554():399-419. PubMed ID: 30308275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Break force and tensile strength relationships for curved faced tablets subject to diametrical compression.
    Shang C; Sinka IC; Jayaraman B; Pan J
    Int J Pharm; 2013 Feb; 442(1-2):57-64. PubMed ID: 22975309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigations into the tensile failure of doubly-convex cylindrical tablets under diametral loading using finite element methodology.
    Podczeck F; Drake KR; Newton JM
    Int J Pharm; 2013 Sep; 454(1):412-24. PubMed ID: 23834836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new tablet brittleness index.
    Gong X; Sun CC
    Eur J Pharm Biopharm; 2015 Jun; 93():260-6. PubMed ID: 25907006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling of the break force of tablets under diametrical compression.
    Shang C; Sinka IC; Pan J
    Int J Pharm; 2013 Mar; 445(1-2):99-107. PubMed ID: 23357256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. General and mechanistic optimal relationships for tensile strength of doubly convex tablets under diametrical compression.
    Razavi SM; Gonzalez M; Cuitiño AM
    Int J Pharm; 2015 Apr; 484(1-2):29-37. PubMed ID: 25683146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Note on the Use of Diametrical Compression to Determine Tablet Tensile Strength.
    Hilden J; Polizzi M; Zettler A
    J Pharm Sci; 2017 Jan; 106(1):418-421. PubMed ID: 27686682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive model for tensile strength of pharmaceutical tablets based on local hardness measurements.
    Juban A; Nouguier-Lehon C; Briancon S; Hoc T; Puel F
    Int J Pharm; 2015 Jul; 490(1-2):438-45. PubMed ID: 26043825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic study of the effect of roller compaction and lubricant on tablet mechanical strength.
    He X; Secreast PJ; Amidon GE
    J Pharm Sci; 2007 May; 96(5):1342-55. PubMed ID: 17455360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of moisture content on the consolidation properties of hydroxypropylmethylcellulose K4M (HPMC 2208).
    Nokhodchi A; Ford JL; Rowe PH; Rubinstein MH
    J Pharm Pharmacol; 1996 Nov; 48(11):1116-21. PubMed ID: 8961157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the tensile strength of compacted multi-component mixtures of pharmaceutical powders.
    Wu CY; Best SM; Bentham AC; Hancock BC; Bonfield W
    Pharm Res; 2006 Aug; 23(8):1898-905. PubMed ID: 16850273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact testing as a new approach to determine mechanical strength of pharmaceutical tablets.
    Alhusban F; Murgatroyd EF
    Int J Pharm; 2024 Mar; 653():123891. PubMed ID: 38346603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation and modelling approach of the mechanical properties of compacts made with binary mixtures of pharmaceutical excipients.
    Busignies V; Leclerc B; Porion P; Evesque P; Couarraze G; Tchoreloff P
    Eur J Pharm Biopharm; 2006 Aug; 64(1):51-65. PubMed ID: 16750353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compaction behaviour and new predictive approach to the compressibility of binary mixtures of pharmaceutical excipients.
    Busignies V; Leclerc B; Porion P; Evesque P; Couarraze G; Tchoreloff P
    Eur J Pharm Biopharm; 2006 Aug; 64(1):66-74. PubMed ID: 16697171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of unloading and ejection conditions on the properties of pharmaceutical tablets.
    Mazel V; Yost E; Sluga KK; Nagapudi K; Muliadi AR
    Int J Pharm; 2024 Jun; 658():124150. PubMed ID: 38663645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degree of compression as a potential process control tool of tablet tensile strength.
    Nordström J; Alderborn G
    Pharm Dev Technol; 2011; 16(6):599-608. PubMed ID: 20649411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early detection of capping risk in pharmaceutical compacts.
    Xu X; Vallabh CKP; Hoag SW; Dave VS; Cetinkaya C
    Int J Pharm; 2018 Dec; 553(1-2):338-348. PubMed ID: 30367987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the effect of tablet thickness and punch curvature on density distribution using finite elements method.
    Diarra H; Mazel V; Busignies V; Tchoreloff P
    Int J Pharm; 2015 Sep; 493(1-2):121-8. PubMed ID: 26200746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Gurnham equation in characterizing the compressibility of pharmaceutical materials.
    Zhao J; Burt HM; Miller RA
    Int J Pharm; 2006 Jul; 317(2):109-13. PubMed ID: 16678985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative binder efficiency modeling of dry granulation binders using roller compaction.
    Gupte A; DeHart M; Stagner WC; Haware RV
    Drug Dev Ind Pharm; 2017 Apr; 43(4):574-583. PubMed ID: 27977316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.