These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 30308689)

  • 1. Evaluation of the static magnetic field interactions for a newly developed magnetic ophthalmic implant at 3 Tesla MRI.
    Bodenstein AK; Lüpke M; Seiler C; Goblet F; Nikolic S; Hinze U; Chichkov B; Windhövel C; Bach JP; Harder L; Seifert H
    Rofo; 2019 Mar; 191(3):209-215. PubMed ID: 30308689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [High field MR imaging: magnetic field interactions of aneurysm clips, coronary artery stents and iliac artery stents with a 3.0 Tesla MR system].
    Sommer T; Maintz D; Schmiedel A; Hackenbroch M; Hofer U; Urbach H; Pavlidis C; Träber F; Schild H; Höher M
    Rofo; 2004 May; 176(5):731-8. PubMed ID: 15122473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Orthodontic brackets in high field MR imaging: experimental evaluation of magnetic field interactions at 3.0 Tesla].
    Kemper J; Klocke A; Kahl-Nieke B; Adam G
    Rofo; 2005 Dec; 177(12):1691-8. PubMed ID: 16333793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic displacement force and torque on dental keepers in the static magnetic field of an MR scanner.
    Omatsu M; Obata T; Minowa K; Yokosawa K; Inagaki E; Ishizaka K; Shibayama K; Yamamoto T
    J Magn Reson Imaging; 2014 Dec; 40(6):1481-6. PubMed ID: 24259448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The Safety of MR Conditional Cochlear Implant at 1.5 Tesla Magnetic Resonance Imaging System].
    Takahashi D; Ogura A; Hayashi N; Seino S; Kawai R; Matsuda T; Doi T; Tsuchihashi T
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2016 Aug; 72(8):674-80. PubMed ID: 27546081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of MRI issues for a new cerebral spinal fluid shunt, gravitational valve (GV).
    Moghtader D; Crawack HJ; Miethke C; Dörlemann Z; Shellock FG
    Magn Reson Imaging; 2017 Dec; 44():8-14. PubMed ID: 28735732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orthodontic springs and auxiliary appliances: assessment of magnetic field interactions associated with 1.5 T and 3 T magnetic resonance systems.
    Kemper J; Priest AN; Schulze D; Kahl-Nieke B; Adam G; Klocke A
    Eur Radiol; 2007 Feb; 17(2):533-40. PubMed ID: 16807699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic resonance imaging compatibility and safety of the SOUNDTEC Direct System.
    Dyer RK; Nakmali D; Dormer KJ
    Laryngoscope; 2006 Aug; 116(8):1321-33. PubMed ID: 16885731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic forces on orthodontic wires in high field magnetic resonance imaging (MRI) at 3 tesla.
    Klocke A; Kahl-Nieke B; Adam G; Kemper J
    J Orofac Orthop; 2006 Nov; 67(6):424-9. PubMed ID: 17124561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebral aneurysm clips in the 3-tesla magnetic field. Laboratory investigation.
    Kakizawa Y; Seguchi T; Horiuchi T; Hongo K
    J Neurosurg; 2010 Oct; 113(4):859-69. PubMed ID: 20672898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic field interactions of orthodontic wires during magnetic resonance imaging (MRI) at 1.5 Tesla.
    Klocke A; Kemper J; Schulze D; Adam G; Kahl-Nieke B
    J Orofac Orthop; 2005 Jul; 66(4):279-87. PubMed ID: 16044226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the translational and rotational forces acting on a highly ferromagnetic orthopedic spinal implant in magnetic resonance imaging.
    McComb C; Allan D; Condon B
    J Magn Reson Imaging; 2009 Feb; 29(2):449-53. PubMed ID: 19161201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic Field Interactions of Military and Law Enforcement Bullets at 1.5 and 3 Tesla.
    Diallo I; Auffret M; Attar L; Bouvard E; Rousset J; Ben Salem D
    Mil Med; 2016 Jul; 181(7):710-3. PubMed ID: 27391626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MRI issues for ballistic objects: information obtained at 1.5-, 3- and 7-Tesla.
    Dedini RD; Karacozoff AM; Shellock FG; Xu D; McClellan RT; Pekmezci M
    Spine J; 2013 Jul; 13(7):815-22. PubMed ID: 23562330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is the Ex-PRESS glaucoma shunt magnetic resonance imaging safe?
    Geffen N; Trope GE; Alasbali T; Salonen D; Crowley AP; Buys YM
    J Glaucoma; 2010 Feb; 19(2):116-8. PubMed ID: 19661826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MRI induced torque and demagnetization in retention magnets for a bone conduction implant.
    Jansson KJ; Håkansson B; Reinfeldt S; Taghavi H; Eeg-Olofsson M
    IEEE Trans Biomed Eng; 2014 Jun; 61(6):1887-93. PubMed ID: 24845299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MRI safety and imaging artifacts evaluated for a cannulated screw used for guided growth surgery.
    Thompson RM; Fowler E; Culo B; Shellock FG
    Magn Reson Imaging; 2020 Feb; 66():219-225. PubMed ID: 31704394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Force and torque effects of a 1.5-Tesla MRI scanner on cardiac pacemakers and ICDs.
    Luechinger R; Duru F; Scheidegger MB; Boesiger P; Candinas R
    Pacing Clin Electrophysiol; 2001 Feb; 24(2):199-205. PubMed ID: 11270700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of MRI issues at 1.5 T for the Temperature Logger Implant.
    Mahrouyan O; Tøien Ø; Shellock FG
    J Therm Biol; 2018 May; 74():249-255. PubMed ID: 29801635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A next-generation, flow-diverting implant used to treat brain aneurysms: in vitro evaluation of magnetic field interactions, heating and artifacts at 3-T.
    Karacozoff AM; Shellock FG; Wakhloo AK
    Magn Reson Imaging; 2013 Jan; 31(1):145-9. PubMed ID: 22901731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.