These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 30308812)

  • 1. Uptake and toxic effects of triphenyl phosphate on freshwater microalgae Chlorella vulgaris and Scenedesmus obliquus: Insights from untargeted metabolomics.
    Wang L; Huang X; Lim DJ; Laserna AKC; Li SFY
    Sci Total Environ; 2019 Feb; 650(Pt 1):1239-1249. PubMed ID: 30308812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolomics reveals that tris(1,3-dichloro-2-propyl)phosphate (TDCPP) causes disruption of membrane lipids in microalga Scenedesmus obliquus.
    Wang L; Huang X; Laserna AKC; Li SFY
    Sci Total Environ; 2020 Mar; 708():134498. PubMed ID: 31796289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Untargeted metabolomics reveals transformation pathways and metabolic response of the earthworm Perionyx excavatus after exposure to triphenyl phosphate.
    Wang L; Huang X; Laserna AKC; Li SFY
    Sci Rep; 2018 Nov; 8(1):16440. PubMed ID: 30401822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TPhP exposure disturbs carbohydrate metabolism, lipid metabolism, and the DNA damage repair system in zebrafish liver.
    Du Z; Zhang Y; Wang G; Peng J; Wang Z; Gao S
    Sci Rep; 2016 Feb; 6():21827. PubMed ID: 26898711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute exposure to triphenyl phosphate (TPhP) disturbs ocular development and muscular organization in zebrafish larvae.
    Shi Q; Tsui MMP; Hu C; Lam JCW; Zhou B; Chen L
    Ecotoxicol Environ Saf; 2019 Sep; 179():119-126. PubMed ID: 31035246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical- and species-specific toxicity of nonylphenol and octylphenol to microalgae Chlorella pyrenoidosa and Scenedesmus obliquus.
    Yang W; Gao X; Wu Y; Wan L; Lu C; Huang J; Chen H; Yang Y; Ding H; Zhang W
    Environ Toxicol Pharmacol; 2021 Jan; 81():103517. PubMed ID: 33080356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A global metabolomic insight into the oxidative stress and membrane damage of copper oxide nanoparticles and microparticles on microalga Chlorella vulgaris.
    Wang L; Huang X; Sun W; Too HZ; Laserna AKC; Li SFY
    Environ Pollut; 2020 Mar; 258():113647. PubMed ID: 31810715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential effects of P25 TiO2 nanoparticles on freshwater green microalgae: Chlorella and Scenedesmus species.
    Roy R; Parashar A; Bhuvaneshwari M; Chandrasekaran N; Mukherjee A
    Aquat Toxicol; 2016 Jul; 176():161-71. PubMed ID: 27137676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of polystyrene and triphenyl phosphate on growth, photosynthesis and oxidative stress of Chaetoceros meülleri.
    Wang SC; Gao ZY; Liu FF; Chen SQ; Liu GZ
    Sci Total Environ; 2021 Nov; 797():149180. PubMed ID: 34311354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Species-specific metabolism of triphenyl phosphate and its mono-hydroxylated product by human and rat CYP2E1 and the carp ortholog.
    Hu KQ; Luo XJ; Zeng YH; Liu Y; Mai BX
    Ecotoxicol Environ Saf; 2024 Sep; 283():116748. PubMed ID: 39059342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecotoxicological effects of perfluorooctanoic acid on freshwater microalgae Chlamydomonas reinhardtii and Scenedesmus obliquus.
    Hu C; Luo Q; Huang Q
    Environ Toxicol Chem; 2014 May; 33(5):1129-34. PubMed ID: 24464740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The light-dependent lethal effects of 1,2-benzisothiazol-3(2H)-one and its biodegradation by freshwater microalgae.
    Wang XX; Zhang QQ; Wu YH; Dao GH; Zhang TY; Tao Y; Hu HY
    Sci Total Environ; 2019 Jul; 672():563-571. PubMed ID: 30970286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicity assessment of organophosphate flame retardant triphenyl phosphate (TPHP) on intestines in mice.
    Peng C; Zhang X; Chen Y; Wang L
    Ecotoxicol Environ Saf; 2023 Dec; 268():115685. PubMed ID: 37976930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early life exposure to triphenyl phosphate: Effects on thyroid function, growth, and resting metabolic rate of Japanese quail (Coturnix japonica) chicks.
    Guigueno MF; Head JA; Letcher RJ; Karouna-Renier N; Peters L; Hanas AM; Fernie KJ
    Environ Pollut; 2019 Oct; 253():899-908. PubMed ID: 31351298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid in vitro metabolism of the flame retardant triphenyl phosphate and effects on cytotoxicity and mRNA expression in chicken embryonic hepatocytes.
    Su G; Crump D; Letcher RJ; Kennedy SW
    Environ Sci Technol; 2014 Nov; 48(22):13511-9. PubMed ID: 25350880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurodevelopmental toxicity of organophosphate flame retardant triphenyl phosphate (TPhP) on zebrafish (Danio rerio) at different life stages.
    Zhang Q; Zheng S; Shi X; Luo C; Huang W; Lin H; Peng J; Tan W; Wu K
    Environ Int; 2023 Feb; 172():107745. PubMed ID: 36657258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxic effect of triphenyl phosphate (TPHP) on Cyprinus carpio and the intestinal microbial community response.
    Wang Y; Sha W; Zhang C; Li J; Wang C; Liu C; Chen J; Zhang W; Song Y; Wang R; Gao P
    Chemosphere; 2022 Jul; 299():134463. PubMed ID: 35367484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxic effects of single animal hormones and their mixtures on the growth of Chlorella vulgaris and Scenedesmus armatus.
    Czarny K; Szczukocki D; Krawczyk B; Skrzypek S; Zieliński M; Gadzała-Kopciuch R
    Chemosphere; 2019 Jun; 224():93-102. PubMed ID: 30818199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic liquids toxicity on fresh water microalgae, Scenedesmus quadricauda, Chlorella vulgaris &Botryococcus braunii; selection criterion for use in a two-phase partitioning bioreactor (TPPBR).
    Quraishi KS; Bustam MA; Krishnan S; Aminuddin NF; Azeezah N; Ghani NA; Uemura Y; Lévêque JM
    Chemosphere; 2017 Oct; 184():642-651. PubMed ID: 28624742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triphenyl phosphate proved more potent than its metabolite diphenyl phosphate in inducing hepatic insulin resistance through endoplasmic reticulum stress.
    Yue J; Sun X; Duan X; Sun C; Chen H; Sun H; Zhang L
    Environ Int; 2023 Feb; 172():107749. PubMed ID: 36680801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.