These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 30308824)
1. Climate, forest growing season, and evapotranspiration changes in the central Appalachian Mountains, USA. Gaertner BA; Zegre N; Warner T; Fernandez R; He Y; Merriam ER Sci Total Environ; 2019 Feb; 650(Pt 1):1371-1381. PubMed ID: 30308824 [TBL] [Abstract][Full Text] [Related]
2. Declining water yield from forested mountain watersheds in response to climate change and forest mesophication. Caldwell PV; Miniat CF; Elliott KJ; Swank WT; Brantley ST; Laseter SH Glob Chang Biol; 2016 Sep; 22(9):2997-3012. PubMed ID: 27038309 [TBL] [Abstract][Full Text] [Related]
3. Warmer temperatures reduce net carbon uptake, but do not affect water use, in a mature southern Appalachian forest. ChristopherOishi A; Miniat CF; Novick KA; Brantley ST; Vose JM; Walker JT Agric For Meteorol; 2018; 252():269-282. PubMed ID: 32280152 [TBL] [Abstract][Full Text] [Related]
4. An integrated modeling approach for estimating hydrologic responses to future urbanization and climate changes in a mixed-use midwestern watershed. Sunde MG; He HS; Hubbart JA; Urban MA J Environ Manage; 2018 Aug; 220():149-162. PubMed ID: 29777998 [TBL] [Abstract][Full Text] [Related]
5. On the inter- and intra-annual variability of ecosystem evapotranspiration and water use efficiency of an oak savanna and annual grassland subjected to booms and busts in rainfall. Baldocchi D; Ma S; Verfaillie J Glob Chang Biol; 2021 Jan; 27(2):359-375. PubMed ID: 33091183 [TBL] [Abstract][Full Text] [Related]
6. Geospatial patterns in runoff projections using random forest based forecasting of time-series data for the mid-Atlantic region of the United States. Gaertner B Sci Total Environ; 2024 Feb; 912():169211. PubMed ID: 38097071 [TBL] [Abstract][Full Text] [Related]
7. Snowmelt timing, phenology, and growing season length in conifer forests of Crater Lake National Park, USA. O'Leary DS; Kellermann JL; Wayne C Int J Biometeorol; 2018 Feb; 62(2):273-285. PubMed ID: 28965255 [TBL] [Abstract][Full Text] [Related]
8. The effects of future nationwide forest transition to discharge in the 21st century with regard to general circulation model climate change scenarios. Mouri G; Nakano K; Tsuyama I; Tanaka N Environ Res; 2016 Aug; 149():288-296. PubMed ID: 26852164 [TBL] [Abstract][Full Text] [Related]
9. Hydrologic modeling to examine the influence of the forestry reclamation approach and climate change on mineland hydrology. Williamson TN; Barton CD Sci Total Environ; 2020 Nov; 743():140605. PubMed ID: 32758820 [TBL] [Abstract][Full Text] [Related]
10. Response of evapotranspiration to changes in land use and land cover and climate in China during 2001-2013. Li G; Zhang F; Jing Y; Liu Y; Sun G Sci Total Environ; 2017 Oct; 596-597():256-265. PubMed ID: 28433768 [TBL] [Abstract][Full Text] [Related]
11. Changes in vegetation phenology on the Mongolian Plateau and their climatic determinants. Miao L; Müller D; Cui X; Ma M PLoS One; 2017; 12(12):e0190313. PubMed ID: 29267403 [TBL] [Abstract][Full Text] [Related]
12. Increased evapotranspiration demand in a Mediterranean climate might cause a decline in fungal yields under global warming. Ágreda T; Águeda B; Olano JM; Vicente-Serrano SM; Fernández-Toirán M Glob Chang Biol; 2015 Sep; 21(9):3499-510. PubMed ID: 25930066 [TBL] [Abstract][Full Text] [Related]
13. Evapotranspiration dynamics and their drivers in a temperate mixed forest in northeast China. Wang X; Zhu X; Xu M; Wen R; Jia Q; Xie Y; Ma H PeerJ; 2022; 10():e13549. PubMed ID: 35698616 [TBL] [Abstract][Full Text] [Related]
14. Climatic controls of vegetation vigor in four contrasting forest types of India--evaluation from National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer datasets (1990-2000). Prasad VK; Anuradha E; Badarinath KV Int J Biometeorol; 2005 Sep; 50(1):6-16. PubMed ID: 15902506 [TBL] [Abstract][Full Text] [Related]
15. Reassessing rainfall in the Luquillo Mountains, Puerto Rico: Local and global ecohydrological implications. Murphy SF; Stallard RF; Scholl MA; González G; Torres-Sánchez AJ PLoS One; 2017; 12(7):e0180987. PubMed ID: 28686734 [TBL] [Abstract][Full Text] [Related]
16. Projected hydrologic changes over the north of the Iberian Peninsula using a Euro-CORDEX multi-model ensemble. Yeste P; Rosa-Cánovas JJ; Romero-Jiménez E; García-Valdecasas Ojeda M; Gámiz-Fortis SR; Castro-Díez Y; Esteban-Parra MJ Sci Total Environ; 2021 Jul; 777():146126. PubMed ID: 33684765 [TBL] [Abstract][Full Text] [Related]
17. [Energy balance and evapotranspiration in broad-leaved Korean pine forest in Changbai Mountains]. Zhang XJ; Yuan FH; Chen NN; Deng JL; Yu XZ; Sheng XJ Ying Yong Sheng Tai Xue Bao; 2011 Mar; 22(3):607-13. PubMed ID: 21657014 [TBL] [Abstract][Full Text] [Related]
18. Meteorological driving forces of reference evapotranspiration and their trends in California. Ahmadi A; Daccache A; Snyder RL; Suvočarev K Sci Total Environ; 2022 Nov; 849():157823. PubMed ID: 35931171 [TBL] [Abstract][Full Text] [Related]
19. [Changes of China agricultural climate resources under the background of climate change. IV. Spatiotemporal change characteristics of agricultural climate resources in sub-humid warm-temperate irrigated wheat-maize agricultural area of Huang-Huai-Hai Plain]. Liu ZJ; Yang XG; Wang WF Ying Yong Sheng Tai Xue Bao; 2011 Apr; 22(4):905-12. PubMed ID: 21774311 [TBL] [Abstract][Full Text] [Related]
20. Reference evapotranspiration estimate with missing climatic data and multiple linear regression models. Koç DL; Erkan Can M PeerJ; 2023; 11():e15252. PubMed ID: 37131990 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]