These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 30308824)

  • 21. Deciduous forest responses to temperature, precipitation, and drought imply complex climate change impacts.
    Xie Y; Wang X; Silander JA
    Proc Natl Acad Sci U S A; 2015 Nov; 112(44):13585-90. PubMed ID: 26483475
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Response of Quercus velutina growth and water use efficiency to climate variability and nitrogen fertilization in a temperate deciduous forest in the northeastern USA.
    Jennings KA; Guerrieri R; Vadeboncoeur MA; Asbjornsen H
    Tree Physiol; 2016 Apr; 36(4):428-43. PubMed ID: 26917704
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The timing of autumn senescence is affected by the timing of spring phenology: implications for predictive models.
    Keenan TF; Richardson AD
    Glob Chang Biol; 2015 Jul; 21(7):2634-2641. PubMed ID: 25662890
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatial and temporal evolution of climatic factors and its impacts on potential evapotranspiration in Loess Plateau of Northern Shaanxi, China.
    Li C; Wu PT; Li XL; Zhou TW; Sun SK; Wang YB; Luan XB; Yu X
    Sci Total Environ; 2017 Jul; 589():165-172. PubMed ID: 28258753
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How do disturbances and climate effects on carbon and water fluxes differ between multi-aged and even-aged coniferous forests?
    Tang X; Li H; Ma M; Yao L; Peichl M; Arain A; Xu X; Goulden M
    Sci Total Environ; 2017 Dec; 599-600():1583-1597. PubMed ID: 28531966
    [TBL] [Abstract][Full Text] [Related]  

  • 26. SSII-Evap: Simplified scheme to incorporate improved evapotranspiration estimates into the streamflow elasticity framework.
    Somorowska U
    MethodsX; 2019; 6():672-681. PubMed ID: 30997347
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influences of removing linear and nonlinear trends from climatic variables on temporal variations of annual reference crop evapotranspiration in Xinjiang, China.
    Li Y; Yao N; Chau HW
    Sci Total Environ; 2017 Aug; 592():680-692. PubMed ID: 28341465
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Explanatory ecological factors for the persistence of desiccation-sensitive seeds in transient soil seed banks: Quercus ilex as a case study.
    Joët T; Ourcival JM; Capelli M; Dussert S; Morin X
    Ann Bot; 2016 Jan; 117(1):165-76. PubMed ID: 26420203
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Increased water deficit decreases Douglas fir growth throughout western US forests.
    Restaino CM; Peterson DL; Littell J
    Proc Natl Acad Sci U S A; 2016 Aug; 113(34):9557-62. PubMed ID: 27503880
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting tree biomass growth in the temperate-boreal ecotone: Is tree size, age, competition, or climate response most important?
    Foster JR; Finley AO; D'Amato AW; Bradford JB; Banerjee S
    Glob Chang Biol; 2016 Jun; 22(6):2138-51. PubMed ID: 26717889
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensitivity of the reference evapotranspiration to key climatic variables during the growing season in the Ejina oasis northwest China.
    Hou LG; Zou SB; Xiao HL; Yang YG
    Springerplus; 2013; 2(Suppl 1):S4. PubMed ID: 24701387
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Lower responsiveness of canopy evapotranspiration rate than of leaf stomatal conductance to open-air CO2 elevation in rice.
    Shimono H; Nakamura H; Hasegawa T; Okada M
    Glob Chang Biol; 2013 Aug; 19(8):2444-53. PubMed ID: 23564676
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessing streamflow sensitivity of forested headwater catchments to disturbance and climate change in the central Appalachian Mountains region, USA.
    Young D; Zégre N; Edwards P; Fernandez R
    Sci Total Environ; 2019 Dec; 694():133382. PubMed ID: 31756790
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stomatal response to humidity and CO
    Rigden AJ; Salvucci GD
    Glob Chang Biol; 2017 Mar; 23(3):1140-1151. PubMed ID: 27435666
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Future climate and cryosphere impacts on the hydrology of a scarcely gauged catchment on the Jhelum river basin, Northern Pakistan.
    Azmat M; Qamar MU; Huggel C; Hussain E
    Sci Total Environ; 2018 Oct; 639():961-976. PubMed ID: 29929335
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Characteristics of agricultural climate resources in three provinces of northeast China under global climate change].
    Liu ZJ; Yang XG; Wang WF; Li KN; Zhang XY
    Ying Yong Sheng Tai Xue Bao; 2009 Sep; 20(9):2199-206. PubMed ID: 20030143
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential declines in Alaskan boreal forest vitality related to climate and competition.
    Trugman AT; Medvigy D; Anderegg WRL; Pacala SW
    Glob Chang Biol; 2018 Mar; 24(3):1097-1107. PubMed ID: 29055122
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An analysis of the climate change effects on pesticide vapor drift from ground-based pesticide applications to cotton.
    Kannan N
    Sci Rep; 2023 Jun; 13(1):9740. PubMed ID: 37328554
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Climatic warming above the Arctic Circle: are there trends in timing and length of the thermal growing season in Murmansk Region (Russia) between 1951 and 2012?
    Blinova I; Chmielewski FM
    Int J Biometeorol; 2015 Jun; 59(6):693-705. PubMed ID: 25155187
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Divergent phenological response to hydroclimate variability in forested mountain watersheds.
    Hwang T; Band LE; Miniat CF; Song C; Bolstad PV; Vose JM; Love JP
    Glob Chang Biol; 2014 Aug; 20(8):2580-95. PubMed ID: 24677382
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.