These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 3030885)

  • 1. Hsp28stl: a P-element insertion mutation that alters the expression of a heat shock gene in Drosophila melanogaster.
    Eissenberg JC; Elgin SC
    Genetics; 1987 Feb; 115(2):333-40. PubMed ID: 3030885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correct temperature induction and developmental regulation of a cloned heat shock gene transformed into the Drosophila germ line.
    Hoffman EP; Corces VG
    Mol Cell Biol; 1984 Dec; 4(12):2883-9. PubMed ID: 6441890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. (CT)n (GA)n repeats and heat shock elements have distinct roles in chromatin structure and transcriptional activation of the Drosophila hsp26 gene.
    Lu Q; Wallrath LL; Granok H; Elgin SC
    Mol Cell Biol; 1993 May; 13(5):2802-14. PubMed ID: 8474442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequences involved in temperature and ecdysterone-induced transcription are located in separate regions of a Drosophila melanogaster heat shock gene.
    Hoffman E; Corces V
    Mol Cell Biol; 1986 Feb; 6(2):663-73. PubMed ID: 3097502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A detailed developmental and structural study of the transcriptional effects of insertion of the Copia transposon into the white locus of Drosophila melanogaster.
    Zachar Z; Davison D; Garza D; Bingham PM
    Genetics; 1985 Nov; 111(3):495-515. PubMed ID: 2414153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heat shock locus 93D of Drosophila melanogaster: a spliced RNA most strongly conserved in the intron sequence.
    Garbe JC; Pardue ML
    Proc Natl Acad Sci U S A; 1986 Mar; 83(6):1812-6. PubMed ID: 3081901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heat-shock promoters: targets for evolution by P transposable elements in Drosophila.
    Walser JC; Chen B; Feder ME
    PLoS Genet; 2006 Oct; 2(10):e165. PubMed ID: 17029562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron microscopical analysis of Drosophila polytene chromosomes. V. Characteristics of structures formed by transposed DNA segments of mobile elements.
    Semeshin VF; Demakov SA; Perez Alonso M; Belyaeva ES; Bonner JJ; Zhimulev IF
    Chromosoma; 1989 Mar; 97(5):396-412. PubMed ID: 2541983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defective P element insertions affect the expression of sn-glycerol-3-phosphate dehydrogenase alleles in natural populations of Drosophila melanogaster.
    Reed DS; Gibson JB
    Proc Biol Sci; 1993 Jan; 251(1330):39-45. PubMed ID: 8094564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. P transposons controlled by the heat shock promoter.
    Steller H; Pirrotta V
    Mol Cell Biol; 1986 May; 6(5):1640-9. PubMed ID: 3023899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abundant, diverse, and consequential P elements segregate in promoters of small heat-shock genes in Drosophila populations.
    Chen B; Walser JC; Rodgers TH; Sobota RS; Burke MK; Rose MR; Feder ME
    J Evol Biol; 2007 Sep; 20(5):2056-66. PubMed ID: 17714322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of the major heat shock gene of Drosophila melanogaster in Saccharomyces cerevisiae.
    de Banzie JS; Sinclair L; Lis JT
    Nucleic Acids Res; 1986 Apr; 14(8):3587-601. PubMed ID: 3010243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of heat shock protein synthesis by heat-inducible antisense RNA.
    McGarry TJ; Lindquist S
    Proc Natl Acad Sci U S A; 1986 Jan; 83(2):399-403. PubMed ID: 2417242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of a Drosophila heat-shock gene in cells of the yeast Saccharomyces cerevisiae.
    Nicholson RC; Moran LA
    Biosci Rep; 1984 Nov; 4(11):963-72. PubMed ID: 6098321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular cloning of sequences from a Drosophila RNA polymerase II locus by P element transposon tagging.
    Searles LL; Jokerst RS; Bingham PM; Voelker RA; Greenleaf AL
    Cell; 1982 Dec; 31(3 Pt 2):585-92. PubMed ID: 6297774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of HSP70 and HSP28 gene expression: absence of compensatory interactions.
    Lee YJ; Hou ZZ; Curetty L; Erdos G; Stromberg JS; Carper SW; Cho JM; Corry PM
    Mol Cell Biochem; 1994 Aug; 137(2):155-67. PubMed ID: 7845389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deletion polymorphism in a Drosophila melanogaster heat shock gene.
    Sirotkin K; Bartley N; Perry WL; Briggs D; Grell EH; Morganelli C; Berger EM; Bonner JJ; Leicht B
    Mol Gen Genet; 1986 Aug; 204(2):266-72. PubMed ID: 3020365
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two major RNA products are transcribed from heat-shock locus 93D of Drosophila melanogaster.
    Ryseck RP; Walldorf U; Hovemann B
    Chromosoma; 1985; 93(1):17-20. PubMed ID: 2415308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloning of heat-shock locus 93D from Drosophila melanogaster.
    Walldorf U; Richter S; Ryseck RP; Steller H; Edström JE; Bautz EK; Hovemann B
    EMBO J; 1984 Nov; 3(11):2499-504. PubMed ID: 6096125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Germline transformation used to define key features of heat-shock response elements.
    Xiao H; Lis JT
    Science; 1988 Mar; 239(4844):1139-42. PubMed ID: 3125608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.