BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 30308922)

  • 1. Particle-phase concentrations and sources of legacy and novel flame retardants in outdoor and indoor environments across Spain.
    Reche C; Viana M; Querol X; Corcellas C; Barceló D; Eljarrat E
    Sci Total Environ; 2019 Feb; 649():1541-1552. PubMed ID: 30308922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement and health risk assessment of PM
    Deng WJ; Zheng HL; Tsui AK; Chen XW
    Environ Int; 2016 Nov; 96():65-74. PubMed ID: 27608428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seasonal variation and human exposure assessment of legacy and novel brominated flame retardants in PM
    Wang D; Wang P; Zhu Y; Yang R; Zhang W; Matsiko J; Meng W; Zuo P; Li Y; Zhang Q; Jiang G
    Ecotoxicol Environ Saf; 2019 May; 173():526-534. PubMed ID: 30822607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New insight into the levels, distribution and health risk diagnosis of indoor and outdoor dust-bound FRs in colder, rural and industrial zones of Pakistan.
    Khan MU; Li J; Zhang G; Malik RN
    Environ Pollut; 2016 Sep; 216():662-674. PubMed ID: 27346442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Traditional and novel halogenated flame retardants in urban ambient air: Gas-particle partitioning, size distribution and health implications.
    de la Torre A; Barbas B; Sanz P; Navarro I; Artíñano B; Martínez MA
    Sci Total Environ; 2018 Jul; 630():154-163. PubMed ID: 29477113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human exposure to legacy and emerging flame retardants in indoor dust: A multiple-exposure assessment of PBDEs.
    Lee HK; Kang H; Lee S; Kim S; Choi K; Moon HB
    Sci Total Environ; 2020 Jun; 719():137386. PubMed ID: 32112953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Levels, occurrence and human exposure to novel brominated flame retardants (NBFRs) and Dechlorane Plus (DP) in dust from different indoor environments in Hangzhou, China.
    Sun J; Xu Y; Zhou H; Zhang A; Qi H
    Sci Total Environ; 2018 Aug; 631-632():1212-1220. PubMed ID: 29727946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selected organohalogenated flame retardants in Egyptian indoor and outdoor environments: Levels, sources and implications for human exposure.
    Khairy MA; Lohmann R
    Sci Total Environ; 2018 Aug; 633():1536-1548. PubMed ID: 29758904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sources of halogenated brominated retardants in house dust in an industrial city in southern China and associated human exposure.
    Chen SJ; Ding N; Zhu ZC; Tian M; Luo XJ; Mai BX
    Environ Res; 2014 Nov; 135():190-5. PubMed ID: 25282276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Levels of polybrominated diphenyl ethers and novel flame retardants in microenvironment dust from Egypt: an assessment of human exposure.
    Hassan Y; Shoeib T
    Sci Total Environ; 2015 Feb; 505():47-55. PubMed ID: 25306095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Legacy and novel brominated flame retardants in indoor dust from Beijing, China: Occurrence, human exposure assessment and evidence for PBDEs replacement.
    Wang J; Wang Y; Shi Z; Zhou X; Sun Z
    Sci Total Environ; 2018 Mar; 618():48-59. PubMed ID: 29126026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concentrations and variability of organophosphate esters, halogenated flame retardants, and polybrominated diphenyl ethers in indoor and outdoor air in Stockholm, Sweden.
    Wong F; de Wit CA; Newton SR
    Environ Pollut; 2018 Sep; 240():514-522. PubMed ID: 29758525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emerging and Legacy Flame Retardants in UK Indoor Air and Dust: Evidence for Replacement of PBDEs by Emerging Flame Retardants?
    Tao F; Abdallah MA; Harrad S
    Environ Sci Technol; 2016 Dec; 50(23):13052-13061. PubMed ID: 27782391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in Flame Retardant and Legacy Contaminant Concentrations in Indoor Air during Building Construction, Furnishing, and Use.
    Vojta Š; Melymuk L; Klánová J
    Environ Sci Technol; 2017 Oct; 51(20):11891-11899. PubMed ID: 28910084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insight into the distribution pattern, levels, and risk diagnosis of FRs in indoor and outdoor air at low- and high-altitude zones of Pakistan: Implications for sources and exposure.
    Khan MU; Besis A; Li J; Zhang G; Malik RN
    Chemosphere; 2017 Oct; 184():1372-1387. PubMed ID: 28693104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis.
    Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ;
    Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flame retardants in indoor dust and air of a hotel in Japan.
    Takigami H; Suzuki G; Hirai Y; Ishikawa Y; Sunami M; Sakai S
    Environ Int; 2009 May; 35(4):688-93. PubMed ID: 19185920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "Novel" brominated flame retardants in Belgian and UK indoor dust: implications for human exposure.
    Ali N; Harrad S; Goosey E; Neels H; Covaci A
    Chemosphere; 2011 May; 83(10):1360-5. PubMed ID: 21458020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indoor organophosphate and polybrominated flame retardants in Tokyo.
    Saito I; Onuki A; Seto H
    Indoor Air; 2007 Feb; 17(1):28-36. PubMed ID: 17257150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlations between dechlorane plus concentrations in paired hair and indoor dust samples and differences between dechlorane plus isomer concentrations in hair from males and females.
    Chen W; Li J; Dong Z; Bao J; Zhang A; Shen G; Wang Y; Hu J; Jin J
    Chemosphere; 2019 Sep; 231():378-384. PubMed ID: 31141740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.