These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 30309510)

  • 1. Unusual light-reflecting pigment cells appear in the Xenopus neural tube culture system in the presence of guanosine.
    Fukuzawa T; Kikuchi Y
    Tissue Cell; 2018 Oct; 54():55-58. PubMed ID: 30309510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ferritin H subunit gene is specifically expressed in melanophore precursor-derived white pigment cells in which reflecting platelets are formed from stage II melanosomes in the periodic albino mutant of Xenopus laevis.
    Fukuzawa T
    Cell Tissue Res; 2015 Sep; 361(3):733-44. PubMed ID: 25715760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unusual leucophore-like cells specifically appear in the lineage of melanophores in the periodic albino mutant of Xenopus laevis.
    Fukuzawa T
    Pigment Cell Res; 2004 Jun; 17(3):252-61. PubMed ID: 15140070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unusual development of light-reflecting pigment cells in intact and regenerating tail in the periodic albino mutant of Xenopus laevis.
    Fukuzawa T
    Cell Tissue Res; 2010 Oct; 342(1):53-66. PubMed ID: 20859642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiation of neural crest cells of Xenopus laevis in clonal culture.
    Akira E; Ide H
    Pigment Cell Res; 1987; 1(1):28-36. PubMed ID: 3507660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melanophore lineage and clonal organization of the epidermis in Xenopus embryos as revealed by expression of a biogenic marker, GFP.
    Fukuzawa T
    Pigment Cell Res; 2000 Jun; 13(3):151-7. PubMed ID: 10885673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell surface carbohydrate involvement in controlling the adhesion and morphology of neural crest cells and melanophores of Xenopus laevis.
    Milos NC; Wilson HC
    J Exp Zool; 1986 May; 238(2):211-24. PubMed ID: 3086486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of melanoblast differentiation in amphibia by alpha-melanocyte stimulating hormone, a serum melanization factor, and a melanization inhibiting factor.
    Fukuzawa T; Bagnara JT
    Pigment Cell Res; 1989; 2(3):171-81. PubMed ID: 2549532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitf contributes to melanosome distribution and melanophore dendricity.
    Kawasaki A; Kumasaka M; Satoh A; Suzuki M; Tamura K; Goto T; Asashima M; Yamamoto H
    Pigment Cell Melanoma Res; 2008 Feb; 21(1):56-62. PubMed ID: 18353143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melanophore differentiation in the periodic albino mutant of Xenopus laevis.
    Fukuzawa T; Ide H
    Pigment Cell Res; 1987; 1(3):197-201. PubMed ID: 3508277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A ventrally localized inhibitor of melanization in Xenopus laevis skin.
    Fukuzawa T; Ide H
    Dev Biol; 1988 Sep; 129(1):25-36. PubMed ID: 3410161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of local tissue environment on the differentiation of neural crest cells in turtle, with special reference to understanding the spatial distribution of pigment cells.
    Hou L
    Pigment Cell Res; 1999 Apr; 12(2):81-8. PubMed ID: 10231195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An analysis of pigment cell development in the periodic albino mutant of Xenopus.
    MacMillan GJ
    J Embryol Exp Morphol; 1979 Aug; 52():165-70. PubMed ID: 521748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsic pigment-cell stimulating activity in the catfish integument.
    Zuasti A; Johnson WC; Samaraweera P; Bagnara JT
    Pigment Cell Res; 1992 Nov; 5(5 Pt 1):253-62. PubMed ID: 1363134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pigment pattern evolution by differential deployment of neural crest and post-embryonic melanophore lineages in Danio fishes.
    Quigley IK; Turner JM; Nuckels RJ; Manuel JL; Budi EH; MacDonald EL; Parichy DM
    Development; 2004 Dec; 131(24):6053-69. PubMed ID: 15537688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of glycosaminoglycans in anuran pigment cell migration.
    Tucker RP
    J Embryol Exp Morphol; 1986 Mar; 92():145-64. PubMed ID: 3723060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aggregation of pigment granules in single cultured Xenopus laevis melanophores by melatonin analogues.
    Sugden D
    Br J Pharmacol; 1991 Dec; 104(4):922-7. PubMed ID: 1667293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic and experimental studies on a new pigment mutant in Xenopus laevis.
    Droin A
    J Exp Zool; 1992 Nov; 264(2):196-205. PubMed ID: 1431781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pigment cell pattern formation in amphibian embryos: a reexamination of the dopa technique.
    Tucker RP; Erickson CA
    J Exp Zool; 1986 Nov; 240(2):173-82. PubMed ID: 2432154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetic dynamics shaping melanophore and iridophore cell fate in zebrafish.
    Jang HS; Chen Y; Ge J; Wilkening AN; Hou Y; Lee HJ; Choi YR; Lowdon RF; Xing X; Li D; Kaufman CK; Johnson SL; Wang T
    Genome Biol; 2021 Oct; 22(1):282. PubMed ID: 34607603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.