These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 30309526)
1. Rapid quantification of the adulteration of fresh coconut water by dilution and sugars using Raman spectroscopy and chemometrics. Richardson PIC; Muhamadali H; Ellis DI; Goodacre R Food Chem; 2019 Jan; 272():157-164. PubMed ID: 30309526 [TBL] [Abstract][Full Text] [Related]
2. Detection of the adulteration of fresh coconut water via NMR spectroscopy and chemometrics. Richardson PIC; Muhamadali H; Lei Y; Golovanov AP; Ellis DI; Goodacre R Analyst; 2019 Feb; 144(4):1401-1408. PubMed ID: 30601476 [TBL] [Abstract][Full Text] [Related]
3. Attenuated Total Reflectance-Fourier transform infrared spectroscopy coupled with chemometrics for the rapid detection of coconut water adulteration. Teklemariam TA; Moisey J; Gotera J Food Chem; 2021 Sep; 355():129616. PubMed ID: 33799262 [TBL] [Abstract][Full Text] [Related]
4. ATR-FTIR spectroscopy and machine/deep learning models for detecting adulteration in coconut water with sugars, sugar alcohols, and artificial sweeteners. Teklemariam TA; Chou F; Kumaravel P; Van Buskrik J Spectrochim Acta A Mol Biomol Spectrosc; 2024 Dec; 322():124771. PubMed ID: 39032237 [TBL] [Abstract][Full Text] [Related]
5. Detection of apple juice adulteration using near-infrared transflectance spectroscopy. León L; Kelly JD; Downey G Appl Spectrosc; 2005 May; 59(5):593-9. PubMed ID: 15969804 [TBL] [Abstract][Full Text] [Related]
6. Identification and quantification of adulterated honey by Raman spectroscopy combined with convolutional neural network and chemometrics. Wu X; Xu B; Ma R; Niu Y; Gao S; Liu H; Zhang Y Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jun; 274():121133. PubMed ID: 35299093 [TBL] [Abstract][Full Text] [Related]
7. NIR detection of honey adulteration reveals differences in water spectral pattern. Bázár G; Romvári R; Szabó A; Somogyi T; Éles V; Tsenkova R Food Chem; 2016 Mar; 194():873-80. PubMed ID: 26471630 [TBL] [Abstract][Full Text] [Related]
8. Detection of lard in butter using Raman spectroscopy combined with chemometrics. Taylan O; Cebi N; Tahsin Yilmaz M; Sagdic O; Bakhsh AA Food Chem; 2020 Dec; 332():127344. PubMed ID: 32619937 [TBL] [Abstract][Full Text] [Related]
9. Detection of acacia honey adulteration with high fructose corn syrup through determination of targeted α‑Dicarbonyl compound using ion mobility-mass spectrometry coupled with UHPLC-MS/MS. Yan S; Song M; Wang K; Fang X; Peng W; Wu L; Xue X Food Chem; 2021 Aug; 352():129312. PubMed ID: 33652193 [TBL] [Abstract][Full Text] [Related]
10. Qualitative and quantitative detection of honey adulterated with high-fructose corn syrup and maltose syrup by using near-infrared spectroscopy. Li S; Zhang X; Shan Y; Su D; Ma Q; Wen R; Li J Food Chem; 2017 Mar; 218():231-236. PubMed ID: 27719903 [TBL] [Abstract][Full Text] [Related]
11. Rapid quantification of honey adulteration by visible-near infrared spectroscopy combined with chemometrics. Ferreiro-González M; Espada-Bellido E; Guillén-Cueto L; Palma M; Barroso CG; Barbero GF Talanta; 2018 Oct; 188():288-292. PubMed ID: 30029378 [TBL] [Abstract][Full Text] [Related]
12. Rapid quantification of the adulteration of pomegranate juices by Raman spectroscopy and chemometrics. Gao X; Fan D; Li W; Zhang X; Ye Z; Meng Y; Cheng-Yi Liu T Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 302():123014. PubMed ID: 37352785 [TBL] [Abstract][Full Text] [Related]
13. Detection of adulterated sugar with plastic packaging based on spatially offset Raman imaging. Liu Z; Huang M; Zhu Q; Qin J; Kim MS J Sci Food Agric; 2021 Dec; 101(15):6281-6288. PubMed ID: 33963763 [TBL] [Abstract][Full Text] [Related]
14. Honey fraud detection based on sugar syrup adulterations by HPLC-UV fingerprinting and chemometrics. Egido C; Saurina J; Sentellas S; Núñez O Food Chem; 2024 Mar; 436():137758. PubMed ID: 37857208 [TBL] [Abstract][Full Text] [Related]
15. Contemporary Developments and Emerging Trends in the Application of Spectroscopy Techniques: A Particular Reference to Coconut ( Pandiselvam R; Kaavya R; Martinez Monteagudo SI; Divya V; Jain S; Khanashyam AC; Kothakota A; Prasath VA; Ramesh SV; Sruthi NU; Kumar M; Manikantan MR; Kumar CA; Khaneghah AM; Cozzolino D Molecules; 2022 May; 27(10):. PubMed ID: 35630725 [TBL] [Abstract][Full Text] [Related]
16. Rapid quantification of goat milk adulteration with cow milk using Raman spectroscopy and chemometrics. Li W; Huang W; Fan D; Gao X; Zhang X; Meng Y; Liu TC Anal Methods; 2023 Jan; 15(4):455-461. PubMed ID: 36602089 [TBL] [Abstract][Full Text] [Related]
17. Determination of honey adulteration with beet sugar and corn syrup using infrared spectroscopy and genetic-algorithm-based multivariate calibration. Başar B; Özdemir D J Sci Food Agric; 2018 Dec; 98(15):5616-5624. PubMed ID: 29696655 [TBL] [Abstract][Full Text] [Related]
18. Non-targeted detection of milk powder adulteration using Raman spectroscopy and chemometrics: melamine case study. Karunathilaka SR; Farris S; Mossoba MM; Moore JC; Yakes BJ Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2017 Feb; 34(2):170-182. PubMed ID: 27841972 [TBL] [Abstract][Full Text] [Related]
19. Determination of butter adulteration with margarine using Raman spectroscopy. Uysal RS; Boyaci IH; Genis HE; Tamer U Food Chem; 2013 Dec; 141(4):4397-403. PubMed ID: 23993631 [TBL] [Abstract][Full Text] [Related]
20. Feasibility of discrimination of dairy creams and cream-like analogues using Raman spectroscopy and chemometric analysis. Nedeljkovic A; Tomasevic I; Miocinovic J; Pudja P Food Chem; 2017 Oct; 232():487-492. PubMed ID: 28490101 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]