These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 30309568)

  • 1. In vivo anti-hyperuricemic and xanthine oxidase inhibitory properties of tuna protein hydrolysates and its isolated fractions.
    He W; Su G; Sun-Waterhouse D; Waterhouse GIN; Zhao M; Liu Y
    Food Chem; 2019 Jan; 272():453-461. PubMed ID: 30309568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xanthine oxidase inhibitory activity and antihyperuricemic effect of Moringa oleifera Lam. leaf hydrolysate rich in phenolics and peptides.
    Tian Y; Lin L; Zhao M; Peng A; Zhao K
    J Ethnopharmacol; 2021 Apr; 270():113808. PubMed ID: 33450289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design, synthesis and biological evaluation of 1-alkyl-5/6-(5-oxo-4,5-dihydro-1,2,4-oxadiazol-3-yl)-1H-indole-3-carbonitriles as novel xanthine oxidase inhibitors.
    Gao J; Liu X; Zhang B; Mao Q; Zhang Z; Zou Q; Dai X; Wang S
    Eur J Med Chem; 2020 Mar; 190():112077. PubMed ID: 32014678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xanthine oxidase inhibitory peptides derived from tuna protein: virtual screening, inhibitory activity, and molecular mechanisms.
    Yu Z; Kan R; Wu S; Guo H; Zhao W; Ding L; Zheng F; Liu J
    J Sci Food Agric; 2021 Mar; 101(4):1349-1354. PubMed ID: 32820534
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of different buffer systems on the xanthine oxidase inhibitory activity of tuna (Katsuwonus pelamis) protein hydrolysate.
    Su G; He W; Zhao M; Waterhouse GIN; Sun-Waterhouse D
    Food Res Int; 2018 Mar; 105():556-562. PubMed ID: 29433247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the potential of novel xanthine oxidase inhibitory peptide (ACECD) derived from Skipjack tuna hydrolysates using affinity-ultrafiltration coupled with HPLC-MALDI-TOF/TOF-MS.
    Zhong H; Abdullah ; Zhang Y; Deng L; Zhao M; Tang J; Zhang H; Feng F; Wang J
    Food Chem; 2021 Jun; 347():129068. PubMed ID: 33486365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anti-hyperuricemic peptides derived from bonito hydrolysates based on in vivo hyperuricemic model and in vitro xanthine oxidase inhibitory activity.
    Li Y; Kang X; Li Q; Shi C; Lian Y; Yuan E; Zhou M; Ren J
    Peptides; 2018 Sep; 107():45-53. PubMed ID: 30077718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of extracts from Corylopsis coreana Uyeki (Hamamelidaceae) flos on xanthine oxidase activity and hyperuricemia.
    Yoon IS; Park DH; Ki SH; Cho SS
    J Pharm Pharmacol; 2016 Dec; 68(12):1597-1603. PubMed ID: 27696407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of lobetyolin on xanthine oxidase activity
    Yoon IS; Cho SS
    Nat Prod Res; 2021 May; 35(10):1667-1670. PubMed ID: 31140315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and Anti-Hyperuricemic Activity of Xanthine Oxidase Inhibitory Peptides from Pacific White Shrimp and Swimming Crab Based on Molecular Docking Screening.
    Mao Z; Jiang H; Mao X
    J Agric Food Chem; 2023 Jan; 71(3):1620-1627. PubMed ID: 36625439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Moderation of hyperuricemia in rats via consuming walnut protein hydrolysate diet and identification of new antihyperuricemic peptides.
    Li Q; Kang X; Shi C; Li Y; Majumder K; Ning Z; Ren J
    Food Funct; 2018 Jan; 9(1):107-116. PubMed ID: 29019366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-based design and biological evaluation of novel 2-(indol-2-yl) thiazole derivatives as xanthine oxidase inhibitors.
    Song JU; Jang JW; Kim TH; Park H; Park WS; Jung SH; Kim GT
    Bioorg Med Chem Lett; 2016 Feb; 26(3):950-954. PubMed ID: 26774578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and Identification of Novel Xanthine Oxidase Inhibitory Peptides Derived from Round Scad (
    Hu X; Zhou Y; Zhou S; Chen S; Wu Y; Li L; Yang X
    Mar Drugs; 2021 Sep; 19(10):. PubMed ID: 34677437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Toona sinensis Leaf Extract and Its Chemical Constituents on Xanthine Oxidase Activity and Serum Uric Acid Levels in Potassium Oxonate-Induced Hyperuricemic Rats.
    Yuk HJ; Lee YS; Ryu HW; Kim SH; Kim DS
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30544886
    [No Abstract]   [Full Text] [Related]  

  • 15. Effect of Soy Sauce on Serum Uric Acid Levels in Hyperuricemic Rats and Identification of Flazin as a Potent Xanthine Oxidase Inhibitor.
    Li H; Zhao M; Su G; Lin L; Wang Y
    J Agric Food Chem; 2016 Jun; 64(23):4725-34. PubMed ID: 27181598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Termipaniculatones A-F, chalcone-flavonone heterodimers from Terminthia paniculata, and their protective effects on hyperuricemia and acute gouty arthritis.
    Yang TH; Yan DX; Huang XY; Hou B; Ma YB; Peng H; Zhang XM; Chen JJ; Geng CA
    Phytochemistry; 2019 Aug; 164():228-235. PubMed ID: 31181354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro xanthine oxidase inhibitory and in vivo anti-hyperuricemic properties of sodium kaempferol-3'-sulfonate.
    Wang X; Cui Z; Luo Y; Huang Y; Yang X
    Food Chem Toxicol; 2023 Jul; 177():113854. PubMed ID: 37230458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antihyperuricemic effects of thiadiazolopyrimidin-5-one analogues in oxonate treated rats.
    Sathisha KR; Gopal S; Rangappa KS
    Eur J Pharmacol; 2016 Apr; 776():99-105. PubMed ID: 26875636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and evaluation of hydroxychalcones as multifunctional non-purine xanthine oxidase inhibitors for the treatment of hyperuricemia.
    Xie Z; Luo X; Zou Z; Zhang X; Huang F; Li R; Liao S; Liu Y
    Bioorg Med Chem Lett; 2017 Aug; 27(15):3602-3606. PubMed ID: 28655421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel xanthine oxidase inhibitory peptides derived from whey protein: identification, in vitro inhibition mechanism and in vivo activity validation.
    Qi X; Chen H; Guan K; Sun Y; Wang R; Li Q; Ma Y
    Bioorg Chem; 2022 Nov; 128():106097. PubMed ID: 35985156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.