These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 30309598)
1. Structure-activity relationship of procyanidins on advanced glycation end products formation and corresponding mechanisms. Chen Y; Tang S; Chen Y; Zhang R; Zhou M; Wang C; Feng N; Wu Q Food Chem; 2019 Jan; 272():679-687. PubMed ID: 30309598 [TBL] [Abstract][Full Text] [Related]
2. The inhibitory effect of the catechin structure on advanced glycation end product formation in alcoholic media. Wu Q; Tang S; Zhang L; Xiao J; Luo Q; Chen Y; Zhou M; Feng N; Wang C Food Funct; 2020 Jun; 11(6):5396-5408. PubMed ID: 32469349 [TBL] [Abstract][Full Text] [Related]
3. Effects of A-type oligomer procyanidins on protein glycation using two glycation models coupled with spectroscopy, chromatography, and molecular docking. Zhao L; Jin X; Li Y; Yu Y; He L; Liu R Food Res Int; 2022 May; 155():111068. PubMed ID: 35400446 [TBL] [Abstract][Full Text] [Related]
4. Investigation the interaction between procyanidin dimer and α-amylase: Spectroscopic analyses and molecular docking simulation. Dai T; Chen J; Li Q; Li P; Hu P; Liu C; Li T Int J Biol Macromol; 2018 Jul; 113():427-433. PubMed ID: 29408006 [TBL] [Abstract][Full Text] [Related]
5. B procyanidins of Annona crassiflora fruit peel inhibited glycation, lipid peroxidation and protein-bound carbonyls, with protective effects on glycated catalase. Justino AB; Franco RR; Silva HCG; Saraiva AL; Sousa RMF; Espindola FS Sci Rep; 2019 Dec; 9(1):19183. PubMed ID: 31844118 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of advanced glycation endproducts formation by lotus seedpod oligomeric procyanidins through RAGE-MAPK signaling and NF-κB activation in high-AGEs-diet mice. Wu Q; Feng Y; Ouyang Y; Liang Y; Zhao K; Wang Y; Luo Q; Xiao J; Feng N; Zhou M Food Chem Toxicol; 2021 Oct; 156():112481. PubMed ID: 34375722 [TBL] [Abstract][Full Text] [Related]
7. Transport of Flavanolic Monomers and Procyanidin Dimer A2 across Human Adenocarcinoma Stomach Cells (MKN-28). Li S; Li J; Sun Y; Huang Y; He J; Zhu Z J Agric Food Chem; 2019 Mar; 67(12):3354-3362. PubMed ID: 30848127 [TBL] [Abstract][Full Text] [Related]
8. Procyanidin structure defines the extent and specificity of angiotensin I converting enzyme inhibition. Ottaviani JI; Actis-Goretta L; Villordo JJ; Fraga CG Biochimie; 2006; 88(3-4):359-65. PubMed ID: 16330143 [TBL] [Abstract][Full Text] [Related]
9. Polyphenols from flowers of Magnolia coco and their anti-glycation effects. Kato N; Kawabe S; Ganeko N; Yoshimura M; Amakura Y; Ito H Biosci Biotechnol Biochem; 2017 Jul; 81(7):1285-1288. PubMed ID: 28585905 [TBL] [Abstract][Full Text] [Related]
10. Three flavanols delay starch digestion by inhibiting α-amylase and binding with starch. Jiang C; Chen Y; Ye X; Wang L; Shao J; Jing H; Jiang C; Wang H; Ma C Int J Biol Macromol; 2021 Mar; 172():503-514. PubMed ID: 33454330 [TBL] [Abstract][Full Text] [Related]
11. Interaction mechanism between α-glucosidase and A-type trimer procyanidin revealed by integrated spectroscopic analysis techniques. Zhao L; Wen L; Lu Q; Liu R Int J Biol Macromol; 2020 Jan; 143():173-180. PubMed ID: 31816382 [TBL] [Abstract][Full Text] [Related]
12. Interactions between globular proteins and procyanidins of different degrees of polymerization. Prigent SV; Voragen AG; van Koningsveld GA; Baron A; Renard CM; Gruppen H J Dairy Sci; 2009 Dec; 92(12):5843-53. PubMed ID: 19923589 [TBL] [Abstract][Full Text] [Related]
13. Distribution and quantification of flavan-3-ols and procyanidins with low degree of polymerization in nuts, cereals, and legumes. Bittner K; Rzeppa S; Humpf HU J Agric Food Chem; 2013 Sep; 61(38):9148-54. PubMed ID: 23971434 [TBL] [Abstract][Full Text] [Related]
14. Study of an unusual advanced glycation end-product (AGE) derived from glyoxal using mass spectrometry. Lopez-Clavijo AF; Duque-Daza CA; Romero Canelon I; Barrow MP; Kilgour D; Rabbani N; Thornalley PJ; O'Connor PB J Am Soc Mass Spectrom; 2014 Apr; 25(4):673-83. PubMed ID: 24470193 [TBL] [Abstract][Full Text] [Related]
15. Degradation of procyanidins by Aspergillus fumigatus: identification of a novel aromatic ring cleavage product. Contreras-Domínguez M; Guyot S; Marnet N; Le Petit J; Perraud-Gaime I; Roussos S; Augur C Biochimie; 2006 Dec; 88(12):1899-908. PubMed ID: 16905239 [TBL] [Abstract][Full Text] [Related]
16. Methylglyoxal: its presence and potential scavengers. Tan D; Wang Y; Lo CY; Ho CT Asia Pac J Clin Nutr; 2008; 17 Suppl 1():261-4. PubMed ID: 18296351 [TBL] [Abstract][Full Text] [Related]
17. Effect of catechin on dietary AGEs absorption and cytotoxicity in Caco-2 cells. Wu Q; Chen Y; Ouyang Y; He Y; Xiao J; Zhang L; Feng N Food Chem; 2021 Sep; 355():129574. PubMed ID: 33799251 [TBL] [Abstract][Full Text] [Related]
18. Effect of glycation derived from α-dicarbonyl compounds on the in vitro digestibility of β-casein and β-lactoglobulin: A model study with glyoxal, methylglyoxal and butanedione. Zhao D; Le TT; Larsen LB; Li L; Qin D; Su G; Li B Food Res Int; 2017 Dec; 102():313-322. PubMed ID: 29195953 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of Advanced Glycation Endproduct Formation by Lotus Seedpod Oligomeric Procyanidins through RAGE-MAPK Signaling and NF-κB Activation in High-Fat-Diet Rats. Wu Q; Li S; Li X; Sui Y; Yang Y; Dong L; Xie B; Sun Z J Agric Food Chem; 2015 Aug; 63(31):6989-98. PubMed ID: 26207852 [TBL] [Abstract][Full Text] [Related]
20. Effect of the A-Type Linkage on the Pharmacokinetics and Intestinal Metabolism of Litchi Pericarp Oligomeric Procyanidins. Li S; Liu Y; Liu G; He J; Qin X; Yang H; Hu Z; Lamikanra O J Agric Food Chem; 2017 Mar; 65(9):1893-1899. PubMed ID: 28195469 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]