These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 30309858)
1. Deep Learning to Distinguish Recalled but Benign Mammography Images in Breast Cancer Screening. Aboutalib SS; Mohamed AA; Berg WA; Zuley ML; Sumkin JH; Wu S Clin Cancer Res; 2018 Dec; 24(23):5902-5909. PubMed ID: 30309858 [TBL] [Abstract][Full Text] [Related]
2. Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network. Kooi T; van Ginneken B; Karssemeijer N; den Heeten A Med Phys; 2017 Mar; 44(3):1017-1027. PubMed ID: 28094850 [TBL] [Abstract][Full Text] [Related]
3. A deep learning method for classifying mammographic breast density categories. Mohamed AA; Berg WA; Peng H; Luo Y; Jankowitz RC; Wu S Med Phys; 2018 Jan; 45(1):314-321. PubMed ID: 29159811 [TBL] [Abstract][Full Text] [Related]
4. Deep Learning to Improve Breast Cancer Detection on Screening Mammography. Shen L; Margolies LR; Rothstein JH; Fluder E; McBride R; Sieh W Sci Rep; 2019 Aug; 9(1):12495. PubMed ID: 31467326 [TBL] [Abstract][Full Text] [Related]
5. Transfer Learning From Convolutional Neural Networks for Computer-Aided Diagnosis: A Comparison of Digital Breast Tomosynthesis and Full-Field Digital Mammography. Mendel K; Li H; Sheth D; Giger M Acad Radiol; 2019 Jun; 26(6):735-743. PubMed ID: 30076083 [TBL] [Abstract][Full Text] [Related]
6. Deep Learning Pre-training Strategy for Mammogram Image Classification: an Evaluation Study. Clancy K; Aboutalib S; Mohamed A; Sumkin J; Wu S J Digit Imaging; 2020 Oct; 33(5):1257-1265. PubMed ID: 32607908 [TBL] [Abstract][Full Text] [Related]
7. Deep Convolutional Neural Networks for breast cancer screening. Chougrad H; Zouaki H; Alheyane O Comput Methods Programs Biomed; 2018 Apr; 157():19-30. PubMed ID: 29477427 [TBL] [Abstract][Full Text] [Related]
8. Digital breast tomosynthesis versus digital mammography: integration of image modalities enhances deep learning-based breast mass classification. Li X; Qin G; He Q; Sun L; Zeng H; He Z; Chen W; Zhen X; Zhou L Eur Radiol; 2020 Feb; 30(2):778-788. PubMed ID: 31691121 [TBL] [Abstract][Full Text] [Related]
9. SD-CNN: A shallow-deep CNN for improved breast cancer diagnosis. Gao F; Wu T; Li J; Zheng B; Ruan L; Shang D; Patel B Comput Med Imaging Graph; 2018 Dec; 70():53-62. PubMed ID: 30292910 [TBL] [Abstract][Full Text] [Related]
10. Comparison of segmentation-free and segmentation-dependent computer-aided diagnosis of breast masses on a public mammography dataset. Sawyer Lee R; Dunnmon JA; He A; Tang S; Ré C; Rubin DL J Biomed Inform; 2021 Jan; 113():103656. PubMed ID: 33309994 [TBL] [Abstract][Full Text] [Related]
11. A Semiautonomous Deep Learning System to Reduce False Positives in Screening Mammography. Pedemonte S; Tsue T; Mombourquette B; Truong Vu YN; Matthews T; Morales Hoil R; Shah M; Ghare N; Zingman-Daniels N; Holley S; Appleton CM; Su J; Wahl RL Radiol Artif Intell; 2024 May; 6(3):e230033. PubMed ID: 38597785 [TBL] [Abstract][Full Text] [Related]
12. The Potential Impact of Digital Breast Tomosynthesis on the Benign Biopsy Rate in Women Recalled within the UK Breast Screening Programme. Sharma N; McMahon M; Haigh I; Chen Y; Dall BJG Radiology; 2019 May; 291(2):310-317. PubMed ID: 30888932 [TBL] [Abstract][Full Text] [Related]
13. A comparison of the accuracy of film-screen mammography, full-field digital mammography, and digital breast tomosynthesis. Michell MJ; Iqbal A; Wasan RK; Evans DR; Peacock C; Lawinski CP; Douiri A; Wilson R; Whelehan P Clin Radiol; 2012 Oct; 67(10):976-81. PubMed ID: 22625656 [TBL] [Abstract][Full Text] [Related]
14. Development and validation of a deep learning model for detection of breast cancers in mammography from multi-institutional datasets. Ueda D; Yamamoto A; Onoda N; Takashima T; Noda S; Kashiwagi S; Morisaki T; Fukumoto S; Shiba M; Morimura M; Shimono T; Kageyama K; Tatekawa H; Murai K; Honjo T; Shimazaki A; Kabata D; Miki Y PLoS One; 2022; 17(3):e0265751. PubMed ID: 35324962 [TBL] [Abstract][Full Text] [Related]
15. Using deep learning to assist readers during the arbitration process: a lesion-based retrospective evaluation of breast cancer screening performance. Kerschke L; Weigel S; Rodriguez-Ruiz A; Karssemeijer N; Heindel W Eur Radiol; 2022 Feb; 32(2):842-852. PubMed ID: 34383147 [TBL] [Abstract][Full Text] [Related]
16. External validation of a publicly available computer assisted diagnostic tool for mammographic mass lesions with two high prevalence research datasets. Benndorf M; Burnside ES; Herda C; Langer M; Kotter E Med Phys; 2015 Aug; 42(8):4987-96. PubMed ID: 26233224 [TBL] [Abstract][Full Text] [Related]
17. Computerized detection of breast tissue asymmetry depicted on bilateral mammograms: a preliminary study of breast risk stratification. Wang X; Lederman D; Tan J; Wang XH; Zheng B Acad Radiol; 2010 Oct; 17(10):1234-41. PubMed ID: 20619697 [TBL] [Abstract][Full Text] [Related]
18. Screening outcome in women repeatedly recalled for the same mammographic abnormality before, during and after the transition from screen-film to full-field digital screening mammography. van Bommel R; Voogd AC; Louwman MW; Strobbe LJ; Venderink D; Duijm LE Eur Radiol; 2017 Feb; 27(2):553-561. PubMed ID: 27180183 [TBL] [Abstract][Full Text] [Related]
19. A deep learning model integrating mammography and clinical factors facilitates the malignancy prediction of BI-RADS 4 microcalcifications in breast cancer screening. Liu H; Chen Y; Zhang Y; Wang L; Luo R; Wu H; Wu C; Zhang H; Tan W; Yin H; Wang D Eur Radiol; 2021 Aug; 31(8):5902-5912. PubMed ID: 33496829 [TBL] [Abstract][Full Text] [Related]
20. Impact of Transfer Learning Using Local Data on Performance of a Deep Learning Model for Screening Mammography. Condon JJJ; Trinh V; Hall KA; Reintals M; Holmes AS; Oakden-Rayner L; Palmer LJ Radiol Artif Intell; 2024 Jul; 6(4):e230383. PubMed ID: 38717291 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]