BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 30310380)

  • 1. Corrigendum: Plasticity in One Hemisphere, Control From Two: Adaptation in Descending Motor Pathways After Unilateral Corticospinal Injury in Neonatal Rats.
    Wen TC; Lall S; Pagnotta C; Markward J; Gupta D; Ratnadurai-Giridharan S; Bucci J; Greenwald L; Klugman M; Hill NJ; Carmel JB
    Front Neural Circuits; 2018; 12():80. PubMed ID: 30310380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasticity of motor network and function in the absence of corticospinal projection.
    Han Q; Cao C; Ding Y; So KF; Wu W; Qu Y; Zhou L
    Exp Neurol; 2015 May; 267():194-208. PubMed ID: 25792481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motor Cortex Activity Organizes the Developing Rubrospinal System.
    Williams PT; Martin JH
    J Neurosci; 2015 Sep; 35(39):13363-74. PubMed ID: 26424884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anatomical correlates of recovery in single pellet reaching in spinal cord injured rats.
    Hurd C; Weishaupt N; Fouad K
    Exp Neurol; 2013 Sep; 247():605-14. PubMed ID: 23470552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Training-induced plasticity in rats with cervical spinal cord injury: effects and side effects.
    Krajacic A; Weishaupt N; Girgis J; Tetzlaff W; Fouad K
    Behav Brain Res; 2010 Dec; 214(2):323-31. PubMed ID: 20573587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reticulospinal plasticity after cervical spinal cord injury in the rat involves withdrawal of projections below the injury.
    Weishaupt N; Hurd C; Wei DZ; Fouad K
    Exp Neurol; 2013 Sep; 247():241-9. PubMed ID: 23684634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Automated Test of Rat Forelimb Supination Quantifies Motor Function Loss and Recovery After Corticospinal Injury.
    Sindhurakar A; Butensky SD; Meyers E; Santos J; Bethea T; Khalili A; Sloan AP; Rennaker RL; Carmel JB
    Neurorehabil Neural Repair; 2017 Feb; 31(2):122-132. PubMed ID: 27530125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Task-dependent compensation after pyramidal tract and dorsolateral spinal lesions in rats.
    Kanagal SG; Muir GD
    Exp Neurol; 2009 Mar; 216(1):193-206. PubMed ID: 19118552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chasing central nervous system plasticity: the brainstem's contribution to locomotor recovery in rats with spinal cord injury.
    Zörner B; Bachmann LC; Filli L; Kapitza S; Gullo M; Bolliger M; Starkey ML; Röthlisberger M; Gonzenbach RR; Schwab ME
    Brain; 2014 Jun; 137(Pt 6):1716-32. PubMed ID: 24736305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of large unilateral cortical lesions on rubrospinal tract sprouting in newborn rats.
    Castro AJ; Clegg DA; McCLUNG JR
    Am J Anat; 1977 May; 149(1):39-46. PubMed ID: 855803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rewiring of the corticospinal tract in the adult rat after unilateral stroke and anti-Nogo-A therapy.
    Lindau NT; Bänninger BJ; Gullo M; Good NA; Bachmann LC; Starkey ML; Schwab ME
    Brain; 2014 Mar; 137(Pt 3):739-56. PubMed ID: 24355710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinal cord plasticity in response to unilateral inhibition of the rat motor cortex during development: changes to gene expression, muscle afferents and the ipsilateral corticospinal projection.
    Clowry GJ; Davies BM; Upile NS; Gibson CL; Bradley PM
    Eur J Neurosci; 2004 Nov; 20(10):2555-66. PubMed ID: 15548199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantified corticospinal tract diffusion restriction predicts neonatal stroke outcome.
    Kirton A; Shroff M; Visvanathan T; deVeber G
    Stroke; 2007 Mar; 38(3):974-80. PubMed ID: 17272775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prognostication Value of Descending Corticospinal Tract DWI Signal in Neonatal Cerebral Sinovenous Thrombosis.
    Kaseka ML; Moharir M; deVeber G; MacGregor D; Askalan R; Dlamini N
    Pediatr Neurol; 2016 Jun; 59():90-4. PubMed ID: 27025187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can the period of postnatal codevelopment of the rubrospinal and corticospinal systems provide new insights into refinement of limb movement?
    Bertucco M; Dayanidhi S
    J Neurophysiol; 2015 Feb; 113(3):681-3. PubMed ID: 24966297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of transcranial magnetic stimulation for investigating transmission in descending motor tracts in the rat.
    Nielsen JB; Perez MA; Oudega M; Enriquez-Denton M; Aimonetti JM
    Eur J Neurosci; 2007 Feb; 25(3):805-14. PubMed ID: 17328776
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Descending pathways to the spinal cord in teleosts in comparison with mammals, with special attention to rubrospinal pathways.
    Yamamoto N; Nakayama T; Hagio H
    Dev Growth Differ; 2017 May; 59(4):188-193. PubMed ID: 28509386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiological evaluation of sensory and motor pathways after incomplete unilateral spinal cord contusion.
    Bazley FA; Hu C; Maybhate A; Pourmorteza A; Pashai N; Thakor NV; Kerr CL; All AH
    J Neurosurg Spine; 2012 Apr; 16(4):414-23. PubMed ID: 22303873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probable corticospinal tract control of spinal cord plasticity in the rat.
    Chen XY; Wolpaw JR
    J Neurophysiol; 2002 Feb; 87(2):645-52. PubMed ID: 11826033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chapter 2 Comparative anatomy and physiology of the corticospinal system.
    Schieber MH
    Handb Clin Neurol; 2007; 82():15-37. PubMed ID: 18808887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.