BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 30310903)

  • 1. Vibrational spectroscopic monitoring and biochemical analysis of pericellular matrix formation and maturation in a 3-dimensional chondrocyte culture model.
    Owida HA; Rutter AV; Cinque G; Kuiper NJ; Sulé-Suso J; Yang Y
    Analyst; 2018 Dec; 143(24):5979-5986. PubMed ID: 30310903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-culture of chondrons and mesenchymal stromal cells reduces the loss of collagen VI and improves extracellular matrix production.
    Owida HA; De Las Heras Ruiz T; Dhillon A; Yang Y; Kuiper NJ
    Histochem Cell Biol; 2017 Dec; 148(6):625-638. PubMed ID: 28821957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maintenance and Acceleration of Pericellular Matrix Formation within 3D Cartilage Cell Culture Models.
    Owida HA; Kuiper NL; Yang Y
    Cartilage; 2021 Dec; 13(2_suppl):847S-861S. PubMed ID: 31455088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localization of type VI collagen in tissue-engineered cartilage on polymer scaffolds.
    Fraser SA; Crawford A; Frazer A; Dickinson S; Hollander AP; Brook IM; Hatton PV
    Tissue Eng; 2006 Mar; 12(3):569-77. PubMed ID: 16579690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of pericellular matrix in development of a mechanically functional neocartilage.
    Graff RD; Kelley SS; Lee GM
    Biotechnol Bioeng; 2003 May; 82(4):457-64. PubMed ID: 12632402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A proteomic approach for identification and localization of the pericellular components of chondrocytes.
    Zhang Z; Jin W; Beckett J; Otto T; Moed B
    Histochem Cell Biol; 2011 Aug; 136(2):153-62. PubMed ID: 21698479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The pericellular matrix as a transducer of biomechanical and biochemical signals in articular cartilage.
    Guilak F; Alexopoulos LG; Upton ML; Youn I; Choi JB; Cao L; Setton LA; Haider MA
    Ann N Y Acad Sci; 2006 Apr; 1068():498-512. PubMed ID: 16831947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of type VI collagen in chondrocyte microenvironment: study of chondrons isolated from human normal and degenerative articular cartilage and cultured chondrocytes.
    Horikawa O; Nakajima H; Kikuchi T; Ichimura S; Yamada H; Fujikawa K; Toyama Y
    J Orthop Sci; 2004; 9(1):29-36. PubMed ID: 14767702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of Floating Chondrons in Cartilage Tissue Engineering.
    Shafaei H; Bagernezhad H; Bagernajad H
    World J Plast Surg; 2017 Jan; 6(1):62-67. PubMed ID: 28289615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An axisymmetric boundary element model for determination of articular cartilage pericellular matrix properties in situ via inverse analysis of chondron deformation.
    Kim E; Guilak F; Haider MA
    J Biomech Eng; 2010 Mar; 132(3):031011. PubMed ID: 20459199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chondrons and the pericellular matrix of chondrocytes.
    Zhang Z
    Tissue Eng Part B Rev; 2015 Jun; 21(3):267-77. PubMed ID: 25366980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-matrix interactions and dynamic mechanical loading influence chondrocyte gene expression and bioactivity in PEG-RGD hydrogels.
    Villanueva I; Weigel CA; Bryant SJ
    Acta Biomater; 2009 Oct; 5(8):2832-46. PubMed ID: 19508905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retention of the native chondrocyte pericellular matrix results in significantly improved matrix production.
    Larson CM; Kelley SS; Blackwood AD; Banes AJ; Lee GM
    Matrix Biol; 2002 Jun; 21(4):349-59. PubMed ID: 12128072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mechano-chemical model for the passive swelling response of an isolated chondron under osmotic loading.
    Haider MA; Schugart RC; Setton LA; Guilak F
    Biomech Model Mechanobiol; 2006 Jun; 5(2-3):160-71. PubMed ID: 16520959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the PCM in reducing oxidative stress induced by radical initiated photoencapsulation of chondrocytes in poly(ethylene glycol) hydrogels.
    Farnsworth N; Bensard C; Bryant SJ
    Osteoarthritis Cartilage; 2012 Nov; 20(11):1326-35. PubMed ID: 22796510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zonal uniformity in mechanical properties of the chondrocyte pericellular matrix: micropipette aspiration of canine chondrons isolated by cartilage homogenization.
    Guilak F; Alexopoulos LG; Haider MA; Ting-Beall HP; Setton LA
    Ann Biomed Eng; 2005 Oct; 33(10):1312-8. PubMed ID: 16240080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic Isolation of Articular Chondrons: Is It Much Different Than That of Chondrocytes?
    van Mourik M; Schuiringa GH; Varion-Verhagen LP; Vonk LA; van Donkelaar CC; Ito K; Foolen J
    Tissue Eng Part C Methods; 2023 Jan; 29(1):30-40. PubMed ID: 36576016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human osteoarthritic chondrons outnumber patient- and joint-matched chondrocytes in hydrogel culture-Future application in autologous cell-based OA cartilage repair?
    Rothdiener M; Uynuk-Ool T; Südkamp N; Aurich M; Grodzinsky AJ; Kurz B; Rolauffs B
    J Tissue Eng Regen Med; 2018 Feb; 12(2):e1206-e1220. PubMed ID: 28714570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro expression of cartilage-specific markers by chondrocytes on a biocompatible hydrogel: implications for engineering cartilage tissue.
    Risbud M; Ringe J; Bhonde R; Sittinger M
    Cell Transplant; 2001; 10(8):755-63. PubMed ID: 11814119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of hydrogel structure and dynamic loading on chondrocyte gene expression and matrix formation.
    Nicodemus GD; Bryant SJ
    J Biomech; 2008; 41(7):1528-36. PubMed ID: 18417139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.