These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 30310965)
1. Enhancement in the catalytic activity of Sulfolobus solfataricus P2 (+)-γ-lactamase by semi-rational design with the aid of a newly established high-throughput screening method. Gao S; Lu Y; Li Y; Huang R; Zheng G Appl Microbiol Biotechnol; 2019 Jan; 103(1):251-263. PubMed ID: 30310965 [TBL] [Abstract][Full Text] [Related]
2. Engineering the Enantioselectivity and Thermostability of a (+)-γ-Lactamase from Microbacterium hydrocarbonoxydans for Kinetic Resolution of Vince Lactam (2-Azabicyclo[2.2.1]hept-5-en-3-one). Gao S; Zhu S; Huang R; Li H; Wang H; Zheng G Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29054871 [TBL] [Abstract][Full Text] [Related]
3. Efficient synthesis of the intermediate of abacavir and carbovir using a novel (+)-γ-lactamase as a catalyst. Gao S; Zhu S; Huang R; Lu Y; Zheng G Bioorg Med Chem Lett; 2015 Sep; 25(18):3878-81. PubMed ID: 26235952 [TBL] [Abstract][Full Text] [Related]
4. Discovery and characterization of a second extremely thermostable (+)-γ-lactamase from Sulfolobus solfataricus P2. Zhu S; Huang R; Gao S; Li X; Zheng G J Biosci Bioeng; 2016 May; 121(5):484-90. PubMed ID: 26685014 [TBL] [Abstract][Full Text] [Related]
5. Enhancing the atypical esterase promiscuity of the γ-lactamase Sspg from Sulfolobus solfataricus by substrate screening. Wang J; Zhao H; Zhao G; Chen D; Tao Y; Wu S Appl Microbiol Biotechnol; 2019 May; 103(10):4077-4087. PubMed ID: 30955078 [TBL] [Abstract][Full Text] [Related]
6. Identification and characterization of a novel (+)-γ-lactamase from Microbacterium hydrocarbonoxydans. Gao S; Huang R; Zhu S; Li H; Zheng G Appl Microbiol Biotechnol; 2016 Nov; 100(22):9543-9553. PubMed ID: 27255489 [TBL] [Abstract][Full Text] [Related]
7. Promiscuous (+)-γ-lactamase activity of an amidase from nitrile hydratase pathway for efficient synthesis of carbocyclic nucleosides intermediate. Li H; Zhu S; Zheng G Bioorg Med Chem Lett; 2018 Apr; 28(6):1071-1076. PubMed ID: 29486967 [TBL] [Abstract][Full Text] [Related]
8. [Advances in lactamases from microbes--a review]. Wang J; Zheng G; Wu S Wei Sheng Wu Xue Bao; 2010 Aug; 50(8):988-94. PubMed ID: 20931864 [TBL] [Abstract][Full Text] [Related]
9. CBD binding domain fused γ-lactamase from Sulfolobus solfataricus is an efficient catalyst for (-) γ-lactam production. Wang J; Zhu J; Min C; Wu S BMC Biotechnol; 2014 May; 14():40. PubMed ID: 24884655 [TBL] [Abstract][Full Text] [Related]
10. Autodisplay of an archaeal γ-lactamase on the cell surface of Escherichia coli using Xcc_Est as an anchoring scaffold and its application for preparation of the enantiopure antiviral drug intermediate (-) vince lactam. Wang J; Zhao G; Zhang Z; Liang Q; Min C; Wu S Appl Microbiol Biotechnol; 2014 Aug; 98(16):6991-7001. PubMed ID: 24756321 [TBL] [Abstract][Full Text] [Related]
11. Genome mining integrating semi-rational protein engineering and nanoreactor design: roadmap for a robust biocatalyst for industrial resolution of Vince lactam. Li H; Gao S; Qiu Y; Liang C; Zhu S; Zheng G Appl Microbiol Biotechnol; 2020 Feb; 104(3):1109-1123. PubMed ID: 31828408 [TBL] [Abstract][Full Text] [Related]
12. Identification of the amino acid residues affecting the catalytic pocket of the Sulfolobus solfataricus signature amidase. Elisa C; Sergio A Protein Pept Lett; 2010 Feb; 17(2):146-50. PubMed ID: 20214638 [TBL] [Abstract][Full Text] [Related]
13. Structural insights into the γ-lactamase activity and substrate enantioselectivity of an isochorismatase-like hydrolase from Microbacterium hydrocarbonoxydans. Gao S; Zhou Y; Zhang W; Wang W; Yu Y; Mu Y; Wang H; Gong X; Zheng G; Feng Y Sci Rep; 2017 Mar; 7():44542. PubMed ID: 28295028 [TBL] [Abstract][Full Text] [Related]
14. Characterization of mutants of Sulfolobus solfataricus signature amidase able to hydrolyse R-ketoprofen amide. Giordano C; Ammendola S Protein Pept Lett; 2008; 15(6):617-23. PubMed ID: 18680459 [TBL] [Abstract][Full Text] [Related]
15. Semi-rational engineering of CYP153A35 to enhance ω-hydroxylation activity toward palmitic acid. Jung E; Park BG; Yoo HW; Kim J; Choi KY; Kim BG Appl Microbiol Biotechnol; 2018 Jan; 102(1):269-277. PubMed ID: 29124283 [TBL] [Abstract][Full Text] [Related]
16. Enantioselective Resolution of γ-Lactam by a Novel Thermostable Type II (+)-γ-Lactamase from the Hyperthermophilic Archaeon Aeropyrum pernix. Ren L; Zhu S; Shi Y; Gao S; Zheng G Appl Biochem Biotechnol; 2015 May; 176(1):170-84. PubMed ID: 25805015 [TBL] [Abstract][Full Text] [Related]
17. Homology modeling and docking studies of BjGL, a novel (+) gamma-lactamase from Bradyrhizobium japonicum. Song D; Zhu S; Li X; Zheng G J Mol Graph Model; 2014 Feb; 47():1-7. PubMed ID: 24215997 [TBL] [Abstract][Full Text] [Related]
18. pH-, temperature- and ion-dependent oligomerization of Sulfolobus solfataricus recombinant amidase: a study with site-specific mutants. Politi L; Chiancone E; Giangiacomo L; Cervoni L; Scotto d'Abusco A; Scorsino S; Scandurra R Archaea; 2009 Feb; 2(4):221-31. PubMed ID: 19478917 [TBL] [Abstract][Full Text] [Related]
19. Enzymatic preparation of optically pure (+)-2-azabicyclo[2.2.1]hept-5-en-3-one by (-)-γ-lactamase from Bradyrhizobium japonicum USDA 6. Zhu S; Ren L; Yu S; Gong C; Song D; Zheng G Bioorg Med Chem Lett; 2014 Oct; 24(20):4899-902. PubMed ID: 25240615 [TBL] [Abstract][Full Text] [Related]
20. Discovery of a novel (+)-γ-lactamase from Bradyrhizobium japonicum USDA 6 by rational genome mining. Zhu S; Gong C; Song D; Gao S; Zheng G Appl Environ Microbiol; 2012 Oct; 78(20):7492-5. PubMed ID: 22885756 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]