BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 30310965)

  • 1. Enhancement in the catalytic activity of Sulfolobus solfataricus P2 (+)-γ-lactamase by semi-rational design with the aid of a newly established high-throughput screening method.
    Gao S; Lu Y; Li Y; Huang R; Zheng G
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):251-263. PubMed ID: 30310965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering the Enantioselectivity and Thermostability of a (+)-γ-Lactamase from Microbacterium hydrocarbonoxydans for Kinetic Resolution of Vince Lactam (2-Azabicyclo[2.2.1]hept-5-en-3-one).
    Gao S; Zhu S; Huang R; Li H; Wang H; Zheng G
    Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29054871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient synthesis of the intermediate of abacavir and carbovir using a novel (+)-γ-lactamase as a catalyst.
    Gao S; Zhu S; Huang R; Lu Y; Zheng G
    Bioorg Med Chem Lett; 2015 Sep; 25(18):3878-81. PubMed ID: 26235952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery and characterization of a second extremely thermostable (+)-γ-lactamase from Sulfolobus solfataricus P2.
    Zhu S; Huang R; Gao S; Li X; Zheng G
    J Biosci Bioeng; 2016 May; 121(5):484-90. PubMed ID: 26685014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the atypical esterase promiscuity of the γ-lactamase Sspg from Sulfolobus solfataricus by substrate screening.
    Wang J; Zhao H; Zhao G; Chen D; Tao Y; Wu S
    Appl Microbiol Biotechnol; 2019 May; 103(10):4077-4087. PubMed ID: 30955078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and characterization of a novel (+)-γ-lactamase from Microbacterium hydrocarbonoxydans.
    Gao S; Huang R; Zhu S; Li H; Zheng G
    Appl Microbiol Biotechnol; 2016 Nov; 100(22):9543-9553. PubMed ID: 27255489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Promiscuous (+)-γ-lactamase activity of an amidase from nitrile hydratase pathway for efficient synthesis of carbocyclic nucleosides intermediate.
    Li H; Zhu S; Zheng G
    Bioorg Med Chem Lett; 2018 Apr; 28(6):1071-1076. PubMed ID: 29486967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Advances in lactamases from microbes--a review].
    Wang J; Zheng G; Wu S
    Wei Sheng Wu Xue Bao; 2010 Aug; 50(8):988-94. PubMed ID: 20931864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CBD binding domain fused γ-lactamase from Sulfolobus solfataricus is an efficient catalyst for (-) γ-lactam production.
    Wang J; Zhu J; Min C; Wu S
    BMC Biotechnol; 2014 May; 14():40. PubMed ID: 24884655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autodisplay of an archaeal γ-lactamase on the cell surface of Escherichia coli using Xcc_Est as an anchoring scaffold and its application for preparation of the enantiopure antiviral drug intermediate (-) vince lactam.
    Wang J; Zhao G; Zhang Z; Liang Q; Min C; Wu S
    Appl Microbiol Biotechnol; 2014 Aug; 98(16):6991-7001. PubMed ID: 24756321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome mining integrating semi-rational protein engineering and nanoreactor design: roadmap for a robust biocatalyst for industrial resolution of Vince lactam.
    Li H; Gao S; Qiu Y; Liang C; Zhu S; Zheng G
    Appl Microbiol Biotechnol; 2020 Feb; 104(3):1109-1123. PubMed ID: 31828408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of the amino acid residues affecting the catalytic pocket of the Sulfolobus solfataricus signature amidase.
    Elisa C; Sergio A
    Protein Pept Lett; 2010 Feb; 17(2):146-50. PubMed ID: 20214638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural insights into the γ-lactamase activity and substrate enantioselectivity of an isochorismatase-like hydrolase from Microbacterium hydrocarbonoxydans.
    Gao S; Zhou Y; Zhang W; Wang W; Yu Y; Mu Y; Wang H; Gong X; Zheng G; Feng Y
    Sci Rep; 2017 Mar; 7():44542. PubMed ID: 28295028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of mutants of Sulfolobus solfataricus signature amidase able to hydrolyse R-ketoprofen amide.
    Giordano C; Ammendola S
    Protein Pept Lett; 2008; 15(6):617-23. PubMed ID: 18680459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Semi-rational engineering of CYP153A35 to enhance ω-hydroxylation activity toward palmitic acid.
    Jung E; Park BG; Yoo HW; Kim J; Choi KY; Kim BG
    Appl Microbiol Biotechnol; 2018 Jan; 102(1):269-277. PubMed ID: 29124283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enantioselective Resolution of γ-Lactam by a Novel Thermostable Type II (+)-γ-Lactamase from the Hyperthermophilic Archaeon Aeropyrum pernix.
    Ren L; Zhu S; Shi Y; Gao S; Zheng G
    Appl Biochem Biotechnol; 2015 May; 176(1):170-84. PubMed ID: 25805015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homology modeling and docking studies of BjGL, a novel (+) gamma-lactamase from Bradyrhizobium japonicum.
    Song D; Zhu S; Li X; Zheng G
    J Mol Graph Model; 2014 Feb; 47():1-7. PubMed ID: 24215997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH-, temperature- and ion-dependent oligomerization of Sulfolobus solfataricus recombinant amidase: a study with site-specific mutants.
    Politi L; Chiancone E; Giangiacomo L; Cervoni L; Scotto d'Abusco A; Scorsino S; Scandurra R
    Archaea; 2009 Feb; 2(4):221-31. PubMed ID: 19478917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic preparation of optically pure (+)-2-azabicyclo[2.2.1]hept-5-en-3-one by (-)-γ-lactamase from Bradyrhizobium japonicum USDA 6.
    Zhu S; Ren L; Yu S; Gong C; Song D; Zheng G
    Bioorg Med Chem Lett; 2014 Oct; 24(20):4899-902. PubMed ID: 25240615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery of a novel (+)-γ-lactamase from Bradyrhizobium japonicum USDA 6 by rational genome mining.
    Zhu S; Gong C; Song D; Gao S; Zheng G
    Appl Environ Microbiol; 2012 Oct; 78(20):7492-5. PubMed ID: 22885756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.