These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 30310965)

  • 21. Increased Processivity, Misincorporation, and Nucleotide Incorporation Efficiency in Sulfolobus solfataricus Dpo4 Thumb Domain Mutants.
    Wang L; Liang C; Wu J; Liu L; Tyo KEJ
    Appl Environ Microbiol; 2017 Sep; 83(18):. PubMed ID: 28710267
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of substrate-binding and selectivity-related residues of maltooligosyltrehalose synthase from the thermophilic archaeon Sulfolobus solfataricus ATCC 35092.
    Tseng WC; Lin CR; Hung XG; Wei TY; Chen YC; Fang TY
    Enzyme Microb Technol; 2014 Mar; 56():53-9. PubMed ID: 24564903
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure-Based Engineering of Amidase from
    Tang XL; Jin JQ; Wu ZM; Jin LQ; Zheng RC; Zheng YG
    Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578259
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The signature amidase from Sulfolobus solfataricus belongs to the CX3C subgroup of enzymes cleaving both amides and nitriles. Ser195 and Cys145 are predicted to be the active site nucleophiles.
    Cilia E; Fabbri A; Uriani M; Scialdone GG; Ammendola S
    FEBS J; 2005 Sep; 272(18):4716-24. PubMed ID: 16156792
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Establishment of a high throughput-screening system for nucleoside deoxyribosyltransferase II mutant enzymes with altered substrate specificity.
    Li J; Yu L; Li J; Xie L; Zhang R; Wang H
    J Biosci Bioeng; 2019 Jul; 128(1):22-27. PubMed ID: 30803783
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced catalytic efficiency and enantioselectivity of epoxide hydrolase from Agrobacterium radiobacter AD1 by iterative saturation mutagenesis for (R)-epichlorohydrin synthesis.
    Zou SP; Zheng YG; Wu Q; Wang ZC; Xue YP; Liu ZQ
    Appl Microbiol Biotechnol; 2018 Jan; 102(2):733-742. PubMed ID: 29151159
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic kinetic resolution of Vince lactam catalyzed by γ-lactamases: a mini-review.
    Zhu S; Zheng G
    J Ind Microbiol Biotechnol; 2018 Dec; 45(12):1017-1031. PubMed ID: 30353294
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biochemical characterization and mutational improvement of a thermophilic esterase from Sulfolobus solfataricus P2.
    Shang YS; Zhang XE; Wang XD; Guo YC; Zhang ZP; Zhou YF
    Biotechnol Lett; 2010 Aug; 32(8):1151-7. PubMed ID: 20386955
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Semi-rational design of L-amino acid deaminase for production of pyruvate and D-alanine by Escherichia coli whole-cell biocatalyst.
    Liu K; Yu H; Sun G; Liu Y; Li J; Du G; Lv X; Liu L
    Amino Acids; 2021 Sep; 53(9):1361-1371. PubMed ID: 34417892
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Probing the catalytically essential residues of the alpha-L-fucosidase from the hyperthermophilic archaeon Sulfolobus solfataricus.
    Cobucci-Ponzano B; Mazzone M; Rossi M; Moracci M
    Biochemistry; 2005 Apr; 44(16):6331-42. PubMed ID: 15835922
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Promiscuous enantioselective (-)-γ-lactamase activity in the Pseudomonas fluorescens esterase I.
    Torres LL; Schliessmann A; Schmidt M; Silva-Martin N; Hermoso JA; Berenguer J; Bornscheuer UT; Hidalgo A
    Org Biomol Chem; 2012 May; 10(17):3388-92. PubMed ID: 22359066
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Facilitating the Evolution of Esterase Activity from a Promiscuous Enzyme (Mhg) with Catalytic Functions of Amide Hydrolysis and Carboxylic Acid Perhydrolysis by Engineering the Substrate Entrance Tunnel.
    Yan X; Wang J; Sun Y; Zhu J; Wu S
    Appl Environ Microbiol; 2016 Nov; 82(22):6748-6756. PubMed ID: 27613682
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification and regulation of the catalytic promiscuity of (-)-γ-lactamase from Microbacterium hydrocarbonoxydans.
    Sun Y; Zhao H; Wang J; Zhu J; Wu S
    Appl Microbiol Biotechnol; 2015 Sep; 99(18):7559-68. PubMed ID: 25773976
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sulfolobus solfataricus protein disulphide oxidoreductase: insight into the roles of its redox sites.
    Limauro D; Saviano M; Galdi I; Rossi M; Bartolucci S; Pedone E
    Protein Eng Des Sel; 2009 Jan; 22(1):19-26. PubMed ID: 18988690
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A combined approach of mass spectrometry, molecular modeling, and site-directed mutagenesis highlights key structural features responsible for the thermostability of Sulfolobus solfataricus carboxypeptidase.
    Sommaruga S; De Palma A; Mauri PL; Trisciani M; Basilico F; Martelli PL; Casadio R; Tortora P; Occhipinti E
    Proteins; 2008 Jun; 71(4):1843-52. PubMed ID: 18175312
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An efficient thermostable organophosphate hydrolase and its application in pesticide decontamination.
    Del Giudice I; Coppolecchia R; Merone L; Porzio E; Carusone TM; Mandrich L; Worek F; Manco G
    Biotechnol Bioeng; 2016 Apr; 113(4):724-34. PubMed ID: 26416557
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermophilic archaeal enzymes and applications in biocatalysis.
    Littlechild JA
    Biochem Soc Trans; 2011 Jan; 39(1):155-8. PubMed ID: 21265764
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancing the production of galacto-oligosaccharides by mutagenesis of Sulfolobus solfataricus β-galactosidase.
    Wu Y; Yuan S; Chen S; Wu D; Chen J; Wu J
    Food Chem; 2013 Jun; 138(2-3):1588-95. PubMed ID: 23411285
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Study on the screening of lactamase and its fermentation conditions].
    Li HQ; Su L; Yang L; Wang JJ; Zheng GJ
    Wei Sheng Wu Xue Bao; 2006 Aug; 46(4):571-5. PubMed ID: 17037057
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An L213A variant of β-glycosidase from Sulfolobus solfataricus with increased α-L-arabinofuranosidase activity converts ginsenoside Rc to compound K.
    Choi JH; Shin KC; Oh DK
    PLoS One; 2018; 13(1):e0191018. PubMed ID: 29324789
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.