These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 30310973)

  • 1. Food Footprint as a Measure of Sustainability for Grazing Dairy Farms.
    Rojas-Downing MM; Nejadhashemi AP; Elahi B; Cassida KA; Daneshvar F; Hernandez-Suarez JS; Abouali M; Herman MR; Dawood Al Masraf SA; Harrigan T
    Environ Manage; 2018 Dec; 62(6):1073-1088. PubMed ID: 30310973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors associated with profitability in pasture-based systems of milk production.
    Hanrahan L; McHugh N; Hennessy T; Moran B; Kearney R; Wallace M; Shalloo L
    J Dairy Sci; 2018 Jun; 101(6):5474-5485. PubMed ID: 29525299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relating the carbon footprint of milk from Irish dairy farms to economic performance.
    O'Brien D; Hennessy T; Moran B; Shalloo L
    J Dairy Sci; 2015 Oct; 98(10):7394-407. PubMed ID: 26254524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal, spatial, and management variability in the carbon footprint of New Zealand milk.
    Ledgard SF; Falconer SJ; Abercrombie R; Philip G; Hill JP
    J Dairy Sci; 2020 Jan; 103(1):1031-1046. PubMed ID: 31759588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A national methodology to quantify the diet of grazing dairy cows.
    O'Brien D; Moran B; Shalloo L
    J Dairy Sci; 2018 Sep; 101(9):8595-8604. PubMed ID: 30126605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of feed demand on greenhouse gas emissions and farm profitability for organic and conventional dairy farms.
    Kiefer L; Menzel F; Bahrs E
    J Dairy Sci; 2014 Dec; 97(12):7564-74. PubMed ID: 25468708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors associated with the financial performance of spring-calving, pasture-based dairy farms.
    Ramsbottom G; Horan B; Berry DP; Roche JR
    J Dairy Sci; 2015 May; 98(5):3526-40. PubMed ID: 25747836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Life cycle assessment of milk production from commercial dairy farms: the influence of management tactics.
    Yan MJ; Humphreys J; Holden NM
    J Dairy Sci; 2013 Jul; 96(7):4112-24. PubMed ID: 23660142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversification not specialization reduces global and local environmental burdens from livestock production.
    Soteriades AD; Foskolos A; Styles D; Gibbons JM
    Environ Int; 2019 Nov; 132():104837. PubMed ID: 31450105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Economic and environmental impact of four levels of concentrate supplementation in grazing dairy herds.
    Soder KJ; Rotz CA
    J Dairy Sci; 2001 Nov; 84(11):2560-72. PubMed ID: 11768100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon footprint of dairy goat milk production in New Zealand.
    Robertson K; Symes W; Garnham M
    J Dairy Sci; 2015 Jul; 98(7):4279-93. PubMed ID: 25981064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A case study of the carbon footprint of milk from high-performing confinement and grass-based dairy farms.
    O'Brien D; Capper JL; Garnsworthy PC; Grainger C; Shalloo L
    J Dairy Sci; 2014 Mar; 97(3):1835-51. PubMed ID: 24440256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. e-Dairy: a dynamic and stochastic whole-farm model that predicts biophysical and economic performance of grazing dairy systems.
    Baudracco J; Lopez-Villalobos N; Holmes CW; Comeron EA; Macdonald KA; Barry TN
    Animal; 2013 May; 7(5):870-8. PubMed ID: 23257214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of ecosystem services into the carbon footprint of milk of South German dairy farms.
    Robert Kiefer L; Menzel F; Bahrs E
    J Environ Manage; 2015 Apr; 152():11-8. PubMed ID: 25602922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overview on GHG emissions of raw milk production and a comparison of milk and cheese carbon footprints of two different systems from northern Spain.
    Laca A; Gómez N; Laca A; Díaz M
    Environ Sci Pollut Res Int; 2020 Jan; 27(2):1650-1666. PubMed ID: 31755063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Climate mitigation by dairy intensification depends on intensive use of spared grassland.
    Styles D; Gonzalez-Mejia A; Moorby J; Foskolos A; Gibbons J
    Glob Chang Biol; 2018 Feb; 24(2):681-693. PubMed ID: 28940511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Daily and seasonal trends of electricity and water use on pasture-based automatic milking dairy farms.
    Shortall J; O'Brien B; Sleator RD; Upton J
    J Dairy Sci; 2018 Feb; 101(2):1565-1578. PubMed ID: 29153515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does increasing milk yield per cow reduce greenhouse gas emissions? A system approach.
    Zehetmeier M; Baudracco J; Hoffmann H; Heißenhuber A
    Animal; 2012 Jan; 6(1):154-66. PubMed ID: 22436163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feeding strategies on certified organic dairy farms in Wisconsin and their effect on milk production and income over feed costs.
    Hardie CA; Wattiaux M; Dutreuil M; Gildersleeve R; Keuler NS; Cabrera VE
    J Dairy Sci; 2014 Jul; 97(7):4612-23. PubMed ID: 24819131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficiency and competitiveness of the small New York dairy farm.
    Tauer LW
    J Dairy Sci; 2001 Nov; 84(11):2573-6. PubMed ID: 11768101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.