These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

458 related articles for article (PubMed ID: 30310991)

  • 1. Exercise and the control of muscle mass in human.
    Francaux M; Deldicque L
    Pflugers Arch; 2019 Mar; 471(3):397-411. PubMed ID: 30310991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sarcopenia targeting with autophagy mechanism by exercise.
    Park SS; Seo YK; Kwon KS
    BMB Rep; 2019 Jan; 52(1):64-69. PubMed ID: 30526769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spermidine coupled with exercise rescues skeletal muscle atrophy from D-gal-induced aging rats through enhanced autophagy and reduced apoptosis via AMPK-FOXO3a signal pathway.
    Fan J; Yang X; Li J; Shu Z; Dai J; Liu X; Li B; Jia S; Kou X; Yang Y; Chen N
    Oncotarget; 2017 Mar; 8(11):17475-17490. PubMed ID: 28407698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autophagy is essential to support skeletal muscle plasticity in response to endurance exercise.
    Sanchez AM; Bernardi H; Py G; Candau RB
    Am J Physiol Regul Integr Comp Physiol; 2014 Oct; 307(8):R956-69. PubMed ID: 25121614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exercise training decreases NADPH oxidase activity and restores skeletal muscle mass in heart failure rats.
    Cunha TF; Bechara LR; Bacurau AV; Jannig PR; Voltarelli VA; Dourado PM; Vasconcelos AR; Scavone C; Ferreira JC; Brum PC
    J Appl Physiol (1985); 2017 Apr; 122(4):817-827. PubMed ID: 28104751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disuse atrophy and exercise rehabilitation in humans profoundly affects the expression of genes associated with the regulation of skeletal muscle mass.
    Jones SW; Hill RJ; Krasney PA; O'Conner B; Peirce N; Greenhaff PL
    FASEB J; 2004 Jun; 18(9):1025-7. PubMed ID: 15084522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasticity and function of human skeletal muscle in relation to disuse and rehabilitation: Influence of ageing and surgery.
    Suetta C
    Dan Med J; 2017 Aug; 64(8):. PubMed ID: 28869034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Signaling pathways controlling skeletal muscle mass].
    Zheng LF; Chen PJ; Xiao WH
    Sheng Li Xue Bao; 2019 Aug; 71(4):671-679. PubMed ID: 31440764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Molecular Mechanisms and Prevention Principles of Muscle Atrophy in Aging.
    Zhang Y; Pan X; Sun Y; Geng YJ; Yu XY; Li Y
    Adv Exp Med Biol; 2018; 1088():347-368. PubMed ID: 30390260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiologic and molecular bases of muscle hypertrophy and atrophy: impact of resistance exercise on human skeletal muscle (protein and exercise dose effects).
    Phillips SM
    Appl Physiol Nutr Metab; 2009 Jun; 34(3):403-10. PubMed ID: 19448706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular and molecular events controlling skeletal muscle mass in response to altered use.
    Favier FB; Benoit H; Freyssenet D
    Pflugers Arch; 2008 Jun; 456(3):587-600. PubMed ID: 18193272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of age-induced apoptotic signaling and cellular remodeling by exercise and calorie restriction in skeletal muscle.
    Marzetti E; Lawler JM; Hiona A; Manini T; Seo AY; Leeuwenburgh C
    Free Radic Biol Med; 2008 Jan; 44(2):160-8. PubMed ID: 18191752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of different types of exercise on skeletal muscle atrophy, antioxidant capacity and growth factors expression following myocardial infarction.
    Cai M; Wang Q; Liu Z; Jia D; Feng R; Tian Z
    Life Sci; 2018 Nov; 213():40-49. PubMed ID: 30312703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resistance exercise, muscle loading/unloading and the control of muscle mass.
    Baar K; Nader G; Bodine S
    Essays Biochem; 2006; 42():61-74. PubMed ID: 17144880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of apoptosis and autophagy in mouse and human skeletal muscle with aging and lifelong exercise training.
    Dethlefsen MM; Halling JF; Møller HD; Plomgaard P; Regenberg B; Ringholm S; Pilegaard H
    Exp Gerontol; 2018 Oct; 111():141-153. PubMed ID: 30030137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HORSE SPECIES SYMPOSIUM: The aging horse: Effects of inflammation on muscle satellite cells.
    Reed SA; LaVigne EK; Jones AK; Patterson DF; Schauer AL
    J Anim Sci; 2015 Mar; 93(3):862-70. PubMed ID: 25367519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exercise quantity-dependent muscle hypertrophy in adult zebrafish (Danio rerio).
    Hasumura T; Meguro S
    J Comp Physiol B; 2016 Jul; 186(5):603-14. PubMed ID: 26951149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA-binding proteins: The next step in translating skeletal muscle adaptations?
    Van Pelt DW; Hettinger ZR; Vanderklish PW
    J Appl Physiol (1985); 2019 Aug; 127(2):654-660. PubMed ID: 31120811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resistance exercise and the mechanisms of muscle mass regulation in humans: acute effects on muscle protein turnover and the gaps in our understanding of chronic resistance exercise training adaptation.
    Murton AJ; Greenhaff PL
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2209-14. PubMed ID: 23872221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adapted physical exercise enhances activation and differentiation potential of satellite cells in the skeletal muscle of old mice.
    Cisterna B; Giagnacovo M; Costanzo M; Fattoretti P; Zancanaro C; Pellicciari C; Malatesta M
    J Anat; 2016 May; 228(5):771-83. PubMed ID: 26739770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.