These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 30310993)

  • 1. Aggregation and degradation scales for prion-like domains: sequence features and context weigh in.
    Cascarina SM; Ross ED
    Curr Genet; 2019 Apr; 65(2):387-392. PubMed ID: 30310993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequence features governing aggregation or degradation of prion-like proteins.
    Cascarina SM; Paul KR; Machihara S; Ross ED
    PLoS Genet; 2018 Jul; 14(7):e1007517. PubMed ID: 30005071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalizable Compositional Features Influencing the Proteostatic Fates of Polar Low-Complexity Domains.
    Cascarina SM; Kaplan JP; Elder MR; Brookbank L; Ross ED
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural and pathogenic protein sequence variation affecting prion-like domains within and across human proteomes.
    Cascarina SM; Ross ED
    BMC Genomics; 2020 Jan; 21(1):23. PubMed ID: 31914925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dictyostelium discoideum has a highly Q/N-rich proteome and shows an unusual resilience to protein aggregation.
    Malinovska L; Palm S; Gibson K; Verbavatz JM; Alberti S
    Proc Natl Acad Sci U S A; 2015 May; 112(20):E2620-9. PubMed ID: 25941378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AMYCO: evaluation of mutational impact on prion-like proteins aggregation propensity.
    Iglesias V; Conchillo-Sole O; Batlle C; Ventura S
    BMC Bioinformatics; 2019 Jan; 20(1):24. PubMed ID: 30642249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prion Replication in the Mammalian Cytosol: Functional Regions within a Prion Domain Driving Induction, Propagation, and Inheritance.
    Duernberger Y; Liu S; Riemschoss K; Paulsen L; Bester R; Kuhn PH; Schölling M; Lichtenthaler SF; Vorberg I
    Mol Cell Biol; 2018 Aug; 38(15):. PubMed ID: 29784771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From Prions to Stress Granules: Defining the Compositional Features of Prion-Like Domains That Promote Different Types of Assemblies.
    Fomicheva A; Ross ED
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33513942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of glutamine/asparagine content on aggregation and heterologous prion induction by yeast prion-like domains.
    Shattuck JE; Waechter AC; Ross ED
    Prion; 2017 Jul; 11(4):249-264. PubMed ID: 28665753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Composition-based prediction and rational manipulation of prion-like domain recruitment to stress granules.
    Boncella AE; Shattuck JE; Cascarina SM; Paul KR; Baer MH; Fomicheva A; Lamb AK; Ross ED
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):5826-5835. PubMed ID: 32127480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of Cross-Beta Supersecondary Structure by Soft-Amyloid Cores: Strategies for Their Prediction and Characterization.
    Fernández MR; Pallarès I; Iglesias V; Santos J; Ventura S
    Methods Mol Biol; 2019; 1958():237-261. PubMed ID: 30945222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA-binding proteins with prion-like domains in health and disease.
    Harrison AF; Shorter J
    Biochem J; 2017 Apr; 474(8):1417-1438. PubMed ID: 28389532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Mutations on the Aggregation Propensity of the Human Prion-Like Protein hnRNPA2B1.
    Paul KR; Molliex A; Cascarina S; Boncella AE; Taylor JP; Ross ED
    Mol Cell Biol; 2017 Apr; 37(8):. PubMed ID: 28137911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling the prion propensity of glutamine/asparagine-rich proteins.
    Paul KR; Ross ED
    Prion; 2015; 9(5):347-54. PubMed ID: 26555096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generating new prions by targeted mutation or segment duplication.
    Paul KR; Hendrich CG; Waechter A; Harman MR; Ross ED
    Proc Natl Acad Sci U S A; 2015 Jul; 112(28):8584-9. PubMed ID: 26100899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perfecting prediction of mutational impact on the aggregation propensity of the ALS-associated hnRNPA2 prion-like protein.
    Batlle C; Fernández MR; Iglesias V; Ventura S
    FEBS Lett; 2017 Jul; 591(13):1966-1971. PubMed ID: 28542905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manipulating the aggregation activity of human prion-like proteins.
    Cascarina SM; Paul KR; Ross ED
    Prion; 2017 Sep; 11(5):323-331. PubMed ID: 28934062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prion-like domains as epigenetic regulators, scaffolds for subcellular organization, and drivers of neurodegenerative disease.
    March ZM; King OD; Shorter J
    Brain Res; 2016 Sep; 1647():9-18. PubMed ID: 26996412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MED15 prion-like domain forms a coiled-coil responsible for its amyloid conversion and propagation.
    Batlle C; Calvo I; Iglesias V; J Lynch C; Gil-Garcia M; Serrano M; Ventura S
    Commun Biol; 2021 Mar; 4(1):414. PubMed ID: 33772081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergence and evolution of yeast prion and prion-like proteins.
    An L; Fitzpatrick D; Harrison PM
    BMC Evol Biol; 2016 Jan; 16():24. PubMed ID: 26809710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.