These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 30311246)

  • 1. Constrained empirical-likelihood confidence regions in nonignorable covariate-missing data problems.
    Xie Y; Zhang B
    Stat Med; 2019 Feb; 38(3):452-479. PubMed ID: 30311246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Empirical Likelihood in Nonignorable Covariate-Missing Data Problems.
    Xie Y; Zhang B
    Int J Biostat; 2017 Apr; 13(1):. PubMed ID: 28441139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving estimation efficiency for regression with MNAR covariates.
    Che M; Han P; Lawless JF
    Biometrics; 2020 Mar; 76(1):270-280. PubMed ID: 31393001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Empirical likelihood method for non-ignorable missing data problems.
    Guan Z; Qin J
    Lifetime Data Anal; 2017 Jan; 23(1):113-135. PubMed ID: 27647436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating equations with nonignorably missing response data.
    Wang YG
    Biometrics; 1999 Sep; 55(3):984-9. PubMed ID: 11315039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Instability of inverse probability weighting methods and a remedy for nonignorable missing data.
    Li P; Qin J; Liu Y
    Biometrics; 2023 Dec; 79(4):3215-3226. PubMed ID: 37221141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Jackknife empirical likelihood confidence regions for the evaluation of continuous-scale diagnostic tests with verification bias.
    Wang B; Qin G
    Stat Methods Med Res; 2016 Oct; 25(5):2120-2137. PubMed ID: 24368764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maximum likelihood methods for nonignorable missing responses and covariates in random effects models.
    Stubbendick AL; Ibrahim JG
    Biometrics; 2003 Dec; 59(4):1140-50. PubMed ID: 14969495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An alternative empirical likelihood method in missing response problems and causal inference.
    Ren K; Drummond CA; Brewster PS; Haller ST; Tian J; Cooper CJ; Zhang B
    Stat Med; 2016 Nov; 35(27):5009-5028. PubMed ID: 27417265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Empirical Likelihood for Estimating Equations with Nonignorably Missing Data.
    Tang N; Zhao P; Zhu H
    Stat Sin; 2014 Apr; 24(2):723-747. PubMed ID: 24976738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Likelihood methods for regression models with expensive variables missing by design.
    Zhao Y; Lawless JF; McLeish DL
    Biom J; 2009 Feb; 51(1):123-36. PubMed ID: 19197954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved
    Li D; Wang L
    J Appl Stat; 2022; 49(11):2767-2788. PubMed ID: 35909666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonignorable missingness in matched case-control data analyses.
    Cho Paik M
    Biometrics; 2004 Jun; 60(2):306-14. PubMed ID: 15180655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A profile conditional likelihood approach for the semiparametric transformation regression model with missing covariates.
    Chen HY; Little RJ
    Lifetime Data Anal; 2001 Sep; 7(3):207-24. PubMed ID: 11677827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regression analysis with missing covariate data using estimating equations.
    Zhao LP; Lipsitz S; Lew D
    Biometrics; 1996 Dec; 52(4):1165-82. PubMed ID: 8962448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semiparametric empirical likelihood confidence intervals for the difference of areas under two correlated ROC curves under density ratio model.
    Zhang D; Zhang B
    Biom J; 2014 Jul; 56(4):678-96. PubMed ID: 24648388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment of nonignorable missing data when modeling unobserved heterogeneity with finite mixture models.
    Lehmann T; Schlattmann P
    Biom J; 2017 Jan; 59(1):159-171. PubMed ID: 27804147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maximum likelihood abundance estimation from capture-recapture data when covariates are missing at random.
    Liu Y; Liu Y; Li P; Zhu L
    Biometrics; 2021 Sep; 77(3):1050-1060. PubMed ID: 32672861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A semiparametric imputation approach for regression with censored covariate with application to an AMD progression study.
    Ding Y; Kong S; Kang S; Chen W
    Stat Med; 2018 Oct; 37(23):3293-3308. PubMed ID: 29845616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Empirical Likelihood Based Inferences for Partially Linear Models with Missing Covariates.
    Liang H; Qin Y
    Aust N Z J Stat; 2008 Dec; 50(4):347-359. PubMed ID: 20703365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.