These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 30311453)
1. Anisotropically Aligned Cell-Laden Nanofibrous Bundle Fabricated via Cell Electrospinning to Regenerate Skeletal Muscle Tissue. Yeo M; Kim GH Small; 2018 Nov; 14(48):e1803491. PubMed ID: 30311453 [TBL] [Abstract][Full Text] [Related]
2. Micro/nano-hierarchical scaffold fabricated using a cell electrospinning/3D printing process for co-culturing myoblasts and HUVECs to induce myoblast alignment and differentiation. Yeo M; Kim G Acta Biomater; 2020 Apr; 107():102-114. PubMed ID: 32142759 [TBL] [Abstract][Full Text] [Related]
3. An Yeo M; Chae S; Kim G Theranostics; 2021; 11(7):3331-3347. PubMed ID: 33537090 [TBL] [Abstract][Full Text] [Related]
4. Combining a micro/nano-hierarchical scaffold with cell-printing of myoblasts induces cell alignment and differentiation favorable to skeletal muscle tissue regeneration. Yeo M; Lee H; Kim GH Biofabrication; 2016 Sep; 8(3):035021. PubMed ID: 27634918 [TBL] [Abstract][Full Text] [Related]
5. Nano/microscale topographically designed alginate/PCL scaffolds for inducing myoblast alignment and myogenic differentiation. Yeo M; Kim G Carbohydr Polym; 2019 Nov; 223():115041. PubMed ID: 31427026 [TBL] [Abstract][Full Text] [Related]
6. A Myoblast-Laden Collagen Bioink with Fully Aligned Au Nanowires for Muscle-Tissue Regeneration. Kim W; Jang CH; Kim GH Nano Lett; 2019 Dec; 19(12):8612-8620. PubMed ID: 31661283 [TBL] [Abstract][Full Text] [Related]
7. Effect of nano- and micro-scale topological features on alignment of muscle cells and commitment of myogenic differentiation. Jana S; Leung M; Chang J; Zhang M Biofabrication; 2014 Sep; 6(3):035012. PubMed ID: 24876344 [TBL] [Abstract][Full Text] [Related]
8. Electrohydrodynamic-direct-printed cell-laden microfibrous structure using alginate-based bioink for effective myotube formation. Yeo M; Kim G Carbohydr Polym; 2021 Nov; 272():118444. PubMed ID: 34420709 [TBL] [Abstract][Full Text] [Related]
9. A skeleton muscle model using GelMA-based cell-aligned bioink processed with an electric-field assisted 3D/4D bioprinting. Yang GH; Kim W; Kim J; Kim G Theranostics; 2021; 11(1):48-63. PubMed ID: 33391460 [TBL] [Abstract][Full Text] [Related]
10. Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering. Chen MC; Sun YC; Chen YH Acta Biomater; 2013 Mar; 9(3):5562-72. PubMed ID: 23099301 [TBL] [Abstract][Full Text] [Related]
11. Nanofiber Yarn/Hydrogel Core-Shell Scaffolds Mimicking Native Skeletal Muscle Tissue for Guiding 3D Myoblast Alignment, Elongation, and Differentiation. Wang L; Wu Y; Guo B; Ma PX ACS Nano; 2015 Sep; 9(9):9167-79. PubMed ID: 26280983 [TBL] [Abstract][Full Text] [Related]
12. Synergic effects of nanofiber alignment and electroactivity on myoblast differentiation. Ku SH; Lee SH; Park CB Biomaterials; 2012 Sep; 33(26):6098-104. PubMed ID: 22681977 [TBL] [Abstract][Full Text] [Related]
13. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering. Witt R; Weigand A; Boos AM; Cai A; Dippold D; Boccaccini AR; Schubert DW; Hardt M; Lange C; Arkudas A; Horch RE; Beier JP BMC Cell Biol; 2017 Feb; 18(1):15. PubMed ID: 28245809 [TBL] [Abstract][Full Text] [Related]
14. Strategic design of cardiac mimetic core-shell nanofibrous scaffold impregnated with Salvianolic acid B and Magnesium l-ascorbic acid 2 phosphate for myoblast differentiation. Shoba E; Lakra R; Kiran MS; Korrapati PS Mater Sci Eng C Mater Biol Appl; 2018 Sep; 90():131-147. PubMed ID: 29853076 [TBL] [Abstract][Full Text] [Related]
15. Creation of a Hybrid Scaffold with Dual Configuration of Aligned and Random Electrospun Fibers. Park SH; Kim MS; Lee B; Park JH; Lee HJ; Lee NK; Jeon NL; Suh KY ACS Appl Mater Interfaces; 2016 Feb; 8(4):2826-32. PubMed ID: 26756644 [TBL] [Abstract][Full Text] [Related]
16. Electrospun nanoyarn seeded with myoblasts induced from placental stem cells for the application of stress urinary incontinence sling: An in vitro study. Zhang K; Guo X; Li Y; Fu Q; Mo X; Nelson K; Zhao W Colloids Surf B Biointerfaces; 2016 Aug; 144():21-32. PubMed ID: 27060665 [TBL] [Abstract][Full Text] [Related]
17. Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro. Wang Y; Zhao Z; Zhao B; Qi HX; Peng J; Zhang L; Xu WJ; Hu P; Lu SB Chin Med J (Engl); 2011 Aug; 124(15):2361-6. PubMed ID: 21933569 [TBL] [Abstract][Full Text] [Related]
18. Three-Dimensional Microfibrous Bundle Structure Fabricated Using an Electric Field-Assisted/Cell Printing Process for Muscle Tissue Regeneration. Yeo M; Kim G ACS Biomater Sci Eng; 2018 Feb; 4(2):728-738. PubMed ID: 33418760 [TBL] [Abstract][Full Text] [Related]
19. Hierarchical multilayer assembly of an ordered nanofibrous scaffold via thermal fusion bonding. Park SH; Koh UH; Kim M; Yang DY; Suh KY; Shin JH Biofabrication; 2014 Jun; 6(2):024107. PubMed ID: 24695440 [TBL] [Abstract][Full Text] [Related]
20. Effect of Hierarchical Scaffold Consisting of Aligned dECM Nanofibers and Poly(lactide- Lee H; Kim W; Lee J; Yoo JJ; Kim GH; Lee SJ ACS Appl Mater Interfaces; 2019 Oct; 11(43):39449-39458. PubMed ID: 31584255 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]