BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

527 related articles for article (PubMed ID: 3031158)

  • 1. Oxidation of salicylates by stimulated granulocytes: evidence that these drugs act as free radical scavengers in biological systems.
    Sagone AL; Husney RM
    J Immunol; 1987 Apr; 138(7):2177-83. PubMed ID: 3031158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new method for the detection of hydroxyl radical production by phagocytic cells.
    Sagone AL; Decker MA; Wells RM; Democko C
    Biochim Biophys Acta; 1980 Feb; 628(1):90-7. PubMed ID: 6892610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose: a role as a free radical scavenger in biological systems.
    Sagone AL; Greenwald J; Kraut EH; Bianchine J; Singh D
    J Lab Clin Med; 1983 Jan; 101(1):97-104. PubMed ID: 6294203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotransformation of para-aminobenzoic acid and salicylic acid by PMN.
    Sagone AL; Husney RM; Davis WB
    Free Radic Biol Med; 1993 Jan; 14(1):27-35. PubMed ID: 8454223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of formaldehyde and acetone by hydroxyl-radical generating systems during the metabolism of tertiary butyl alcohol.
    Cederbaum AI; Qureshi A; Cohen G
    Biochem Pharmacol; 1983 Dec; 32(23):3517-24. PubMed ID: 6316986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms for the oxidation of reduced gluthathione by stimulated granulocytes.
    Sagone AL; Husney RM; O'Dorisio MS; Metz EN
    Blood; 1984 Jan; 63(1):96-104. PubMed ID: 6418237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxyl radical production from hydrogen peroxide and enzymatically generated paraquat radicals: catalytic requirements and oxygen dependence.
    Winterbourn CC; Sutton HC
    Arch Biochem Biophys; 1984 Nov; 235(1):116-26. PubMed ID: 6093705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superoxide-dependent hydroxylation by myeloperoxidase.
    Kettle AJ; Winterbourn CC
    J Biol Chem; 1994 Jun; 269(25):17146-51. PubMed ID: 8006021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of hydroxyl radicals derived from granulocytes in lung injury induced by phorbol myristate acetate.
    Kuroda M; Murakami K; Ishikawa Y
    Am Rev Respir Dis; 1987 Dec; 136(6):1435-44. PubMed ID: 2825570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of iron and influence of antiinflammatory drugs on oxygen-derived free radical production and reactivity.
    Cleland LG; Betts WH; Vernon-Roberts B; Bielicki J
    J Rheumatol; 1982; 9(6):885-92. PubMed ID: 7161780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of hydroxyl radical in the vanadium-stimulated oxidation of NADH.
    Keller RJ; Coulombe RA; Sharma RP; Grover TA; Piette LH
    Free Radic Biol Med; 1989; 6(1):15-22. PubMed ID: 2536340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron and xanthine oxidase catalyze formation of an oxidant species distinguishable from OH.: comparison with the Haber-Weiss reaction.
    Winterbourn CC; Sutton HC
    Arch Biochem Biophys; 1986 Jan; 244(1):27-34. PubMed ID: 3004338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prevention of granulocyte-mediated oxidant lung injury in rats by a hydroxyl radical scavenger, dimethylthiourea.
    Fox RB
    J Clin Invest; 1984 Oct; 74(4):1456-64. PubMed ID: 6090504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Secondary radicals derived from chloramines of apolipoprotein B-100 contribute to HOCl-induced lipid peroxidation of low-density lipoproteins.
    Hazell LJ; Davies MJ; Stocker R
    Biochem J; 1999 May; 339 ( Pt 3)(Pt 3):489-95. PubMed ID: 10215584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The interaction of reduced glutathione with active oxygen species generated by xanthine-oxidase-catalyzed metabolism of xanthine.
    Ross D; Cotgreave I; Moldéus P
    Biochim Biophys Acta; 1985 Sep; 841(3):278-82. PubMed ID: 2992602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A high performance liquid chromatography system for quantification of hydroxyl radical formation by determination of dihydroxy benzoic acids.
    Owen RW; Wimonwatwatee T; Spiegelhalder B; Bartsch H
    Eur J Cancer Prev; 1996 Aug; 5(4):233-40. PubMed ID: 8894560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the effects of antioxidant non-steroidal anti-inflammatory drugs against myeloperoxidase and hypochlorous acid luminol-enhanced chemiluminescence.
    Pekoe G; Van Dyke K; Mengoli H; Peden D; English D
    Agents Actions; 1982 Apr; 12(1-2):232-8. PubMed ID: 6282074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Singlet oxygen generation in the superoxide reaction.
    Mao Y; Zang L; Shi X
    Biochem Mol Biol Int; 1995 May; 36(1):227-32. PubMed ID: 7663419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lactoferrin enhances hydroxyl radical production by human neutrophils, neutrophil particulate fractions, and an enzymatic generating system.
    Ambruso DR; Johnston RB
    J Clin Invest; 1981 Feb; 67(2):352-60. PubMed ID: 6780607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beta-2-agonists have antioxidant function in vitro. 1. Inhibition of superoxide anion, hydrogen peroxide, hypochlorous acid and hydroxyl radical.
    Gillissen A; Jaworska M; Schärling B; van Zwoll D; Schultze-Werninghaus G
    Respiration; 1997; 64(1):16-22. PubMed ID: 9044470
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.