These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 30311583)

  • 1. The Use of Scaffolds in Cartilage Regeneration.
    Kalkan R; Nwekwo CW; Adali T
    Crit Rev Eukaryot Gene Expr; 2018; 28(4):343-348. PubMed ID: 30311583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-effect of silk and amniotic membrane for tendon repair.
    Seo YK; Kim JH; Eo SR
    J Biomater Sci Polym Ed; 2016 Aug; 27(12):1232-47. PubMed ID: 27188627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silk fiber reinforcement modulates in vitro chondrogenesis in 3D composite scaffolds.
    Singh YP; Adhikary M; Bhardwaj N; Bhunia BK; Mandal BB
    Biomed Mater; 2017 Jul; 12(4):045012. PubMed ID: 28737162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells.
    Wang Y; Kim UJ; Blasioli DJ; Kim HJ; Kaplan DL
    Biomaterials; 2005 Dec; 26(34):7082-94. PubMed ID: 15985292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composite scaffolds for cartilage tissue engineering.
    Moutos FT; Guilak F
    Biorheology; 2008; 45(3-4):501-12. PubMed ID: 18836249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bombyx mori derived scaffolds and their use in cartilage regeneration: a systematic review.
    Fazal N; Latief N
    Osteoarthritis Cartilage; 2018 Dec; 26(12):1583-1594. PubMed ID: 30059787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The optimization of a scaffold for cartilage regeneration.
    Foss C; Migliaresi C; Motta A
    Organogenesis; 2013; 9(1):19-21. PubMed ID: 23538776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering.
    Mirahmadi F; Tafazzoli-Shadpour M; Shokrgozar MA; Bonakdar S
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4786-94. PubMed ID: 24094188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative evaluation of in vivo biocompatibility and biodegradability of regenerated silk scaffolds reinforced with/without natural silk fibers.
    Mobini S; Taghizadeh-Jahed M; Khanmohammadi M; Moshiri A; Naderi MM; Heidari-Vala H; Ashrafi Helan J; Khanjani S; Springer A; Akhondi MM; Kazemnejad S
    J Biomater Appl; 2016 Jan; 30(6):793-809. PubMed ID: 26475850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hyaluronic Acid Coating Enhances Biocompatibility of Nonwoven PGA Scaffold and Cartilage Formation.
    Lin X; Wang W; Zhang W; Zhang Z; Zhou G; Cao Y; Liu W
    Tissue Eng Part C Methods; 2017 Feb; 23(2):86-97. PubMed ID: 28056722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue-engineered cartilage: the crossroads of biomaterials, cells and stimulating factors.
    Bhardwaj N; Devi D; Mandal BB
    Macromol Biosci; 2015 Feb; 15(2):153-82. PubMed ID: 25283763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fibrin/hyaluronic acid composite hydrogels as appropriate scaffolds for in vivo artificial cartilage implantation.
    Rampichová M; Filová E; Varga F; Lytvynets A; Prosecká E; Koláčná L; Motlík J; Nečas A; Vajner L; Uhlík J; Amler E
    ASAIO J; 2010; 56(6):563-8. PubMed ID: 20966745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrophilic gelatin and hyaluronic acid-treated PLGA scaffolds for cartilage tissue engineering.
    Chang NJ; Jhung YR; Yao CK; Yeh ML
    J Appl Biomater Funct Mater; 2013 Jun; 11(1):e45-52. PubMed ID: 22798193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smart biomaterials for tissue engineering of cartilage.
    Stoop R
    Injury; 2008 Apr; 39 Suppl 1():S77-87. PubMed ID: 18313475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of chondroitin sulphate tethered silk scaffold in cartilaginous disc tissue regeneration.
    Bhattacharjee M; Chawla S; Chameettachal S; Murab S; Bhavesh NS; Ghosh S
    Biomed Mater; 2016 Apr; 11(2):025014. PubMed ID: 27068621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional biomaterials for cartilage regeneration.
    Ge Z; Li C; Heng BC; Cao G; Yang Z
    J Biomed Mater Res A; 2012 Sep; 100(9):2526-36. PubMed ID: 22492677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polysaccharide-protein based scaffolds for cartilage repair and regeneration.
    Shi J; Liu Y; Ling Y; Tang H
    Int J Biol Macromol; 2024 Aug; 274(Pt 2):133495. PubMed ID: 38944089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide-Based Materials for Cartilage Tissue Regeneration.
    Hastar N; Arslan E; Guler MO; Tekinay AB
    Adv Exp Med Biol; 2017; 1030():155-166. PubMed ID: 29081053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silk scaffolds in bone tissue engineering: An overview.
    Bhattacharjee P; Kundu B; Naskar D; Kim HW; Maiti TK; Bhattacharya D; Kundu SC
    Acta Biomater; 2017 Nov; 63():1-17. PubMed ID: 28941652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of biological protein-based collagen scaffolds in cartilage and musculoskeletal tissue engineering--a systematic review of the literature.
    Mafi P; Hindocha S; Mafi R; Khan WS
    Curr Stem Cell Res Ther; 2012 Jul; 7(4):302-9. PubMed ID: 22563667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.