These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 30311732)

  • 1. Material Design Concept of Lithium-Excess Electrode Materials with Rocksalt-Related Structures for Rechargeable Non-Aqueous Batteries.
    Yabuuchi N
    Chem Rec; 2019 Apr; 19(4):690-707. PubMed ID: 30311732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt structure.
    Yabuuchi N; Takeuchi M; Nakayama M; Shiiba H; Ogawa M; Nakayama K; Ohta T; Endo D; Ozaki T; Inamasu T; Sato K; Komaba S
    Proc Natl Acad Sci U S A; 2015 Jun; 112(25):7650-5. PubMed ID: 26056288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries.
    Yabuuchi N; Komaba S
    Sci Technol Adv Mater; 2014 Aug; 15(4):043501. PubMed ID: 27877694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anionic Redox Chemistry in Polysulfide Electrode Materials for Rechargeable Batteries.
    Grayfer ED; Pazhetnov EM; Kozlova MN; Artemkina SB; Fedorov VE
    ChemSusChem; 2017 Dec; 10(24):4805-4811. PubMed ID: 29164810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the Anionic Redox Chemistry in Cathode Materials for High-Energy-Density Sodium-Ion Batteries.
    Shoaib M; Thangadurai V
    ACS Omega; 2022 Oct; 7(39):34710-34717. PubMed ID: 36211051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanosize Cation-Disordered Rocksalt Oxides: Na
    Kobayashi T; Zhao W; Rajendra HB; Yamanaka K; Ohta T; Yabuuchi N
    Small; 2020 Mar; 16(12):e1902462. PubMed ID: 31482668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversible Mn
    Lee J; Kitchaev DA; Kwon DH; Lee CW; Papp JK; Liu YS; Lun Z; Clément RJ; Shi T; McCloskey BD; Guo J; Balasubramanian M; Ceder G
    Nature; 2018 Apr; 556(7700):185-190. PubMed ID: 29643482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of expanded graphite-based materials for rechargeable batteries beyond lithium-ions.
    Li L; Zhang W; Pan W; Wang M; Zhang H; Zhang D; Zhang D
    Nanoscale; 2021 Dec; 13(46):19291-19305. PubMed ID: 34787622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anionic Redox in Rechargeable Lithium Batteries.
    Li B; Xia D
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28660661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiscale Polymeric Materials for Advanced Lithium Battery Applications.
    Kang J; Han DY; Kim S; Ryu J; Park S
    Adv Mater; 2023 Jan; 35(4):e2203194. PubMed ID: 35616903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designer Anions for Better Rechargeable Lithium Batteries and Beyond.
    Song Z; Wang X; Feng W; Armand M; Zhou Z; Zhang H
    Adv Mater; 2024 Jun; ():e2310245. PubMed ID: 38839065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanostructured LiMnO
    Sawamura M; Kobayakawa S; Kikkawa J; Sharma N; Goonetilleke D; Rawal A; Shimada N; Yamamoto K; Yamamoto R; Zhou Y; Uchimoto Y; Nakanishi K; Mitsuhara K; Ohara K; Park J; Byon HR; Koga H; Okoshi M; Ohta T; Yabuuchi N
    ACS Cent Sci; 2020 Dec; 6(12):2326-2338. PubMed ID: 33376794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cation-Disorder-Assisted Reversible Topotactic Phase Transition between Antifluorite and Rocksalt Toward High-Capacity Lithium-Ion Batteries.
    Kobayashi H; Tsukasaki T; Ogasawara Y; Hibino M; Kudo T; Mizuno N; Honma I; Yamaguchi K
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43605-43613. PubMed ID: 32886483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composite-Structure Material Design for High-Energy Lithium Storage.
    Wang L; Shi JL; Su H; Li G; Zubair M; Guo YG; Yu H
    Small; 2018 Aug; 14(34):e1800887. PubMed ID: 29969184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in the Cathode Materials for Lithium Rechargeable Batteries.
    Lee W; Muhammad S; Sergey C; Lee H; Yoon J; Kang YM; Yoon WS
    Angew Chem Int Ed Engl; 2020 Feb; 59(7):2578-2605. PubMed ID: 31034134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and electrochemical properties of Li(1.3)Nb(0.3)V(0.4)O2 as a positive electrode material for rechargeable lithium batteries.
    Yabuuchi N; Takeuchi M; Komaba S; Ichikawa S; Ozaki T; Inamasu T
    Chem Commun (Camb); 2016 Feb; 52(10):2051-4. PubMed ID: 26686804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Progress on Molybdenum Oxides for Rechargeable Batteries.
    Tang K; Farooqi SA; Wang X; Yan C
    ChemSusChem; 2019 Feb; 12(4):755-771. PubMed ID: 30478957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advances on Heterojunction-Type Anode Materials for Lithium-/Sodium-Ion Batteries.
    Fu H; Wen Q; Li PY; Wang ZY; He ZJ; Yan C; Mao J; Dai K; Zhang XH; Zheng JC
    Small Methods; 2022 Dec; 6(12):e2201025. PubMed ID: 36333217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries.
    Wang DY; Guo W; Fu Y
    Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.