These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
455 related articles for article (PubMed ID: 30311935)
1. Smart composite hydrogel with pH-, ionic strength- and temperature-induced actuation. Shang J; Theato P Soft Matter; 2018 Nov; 14(41):8401-8407. PubMed ID: 30311935 [TBL] [Abstract][Full Text] [Related]
2. Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions. Jiao D; Zhu QL; Li CY; Zheng Q; Wu ZL Acc Chem Res; 2022 Jun; 55(11):1533-1545. PubMed ID: 35413187 [TBL] [Abstract][Full Text] [Related]
3. Smart Bilayer Polyacrylamide/DNA Hybrid Hydrogel Film Actuators Exhibiting Programmable Responsive and Reversible Macroscopic Shape Deformations. Bi Y; Du X; He P; Wang C; Liu C; Guo W Small; 2020 Oct; 16(42):e1906998. PubMed ID: 32985098 [TBL] [Abstract][Full Text] [Related]
4. Programmable Deformations of Biomimetic Composite Hydrogels Embedded with Printed Fibers. Zheng SY; Li CY; Du M; Yin J; Qian J; Wu ZL; Zheng Q ACS Appl Mater Interfaces; 2020 Dec; 12(51):57497-57504. PubMed ID: 33319983 [TBL] [Abstract][Full Text] [Related]
5. Smart Hydrogels with Inhomogeneous Structures Assembled Using Nanoclay-Cross-Linked Hydrogel Subunits as Building Blocks. Yao C; Liu Z; Yang C; Wang W; Ju XJ; Xie R; Chu LY ACS Appl Mater Interfaces; 2016 Aug; 8(33):21721-30. PubMed ID: 27490585 [TBL] [Abstract][Full Text] [Related]
6. Stimuli-Responsive DNA-Based Hydrogels: From Basic Principles to Applications. Kahn JS; Hu Y; Willner I Acc Chem Res; 2017 Apr; 50(4):680-690. PubMed ID: 28248486 [TBL] [Abstract][Full Text] [Related]
7. Programmable and Bidirectional Bending of Soft Actuators Based on Janus Structure with Sticky Tough PAA-Clay Hydrogel. Zhao L; Huang J; Zhang Y; Wang T; Sun W; Tong Z ACS Appl Mater Interfaces; 2017 Apr; 9(13):11866-11873. PubMed ID: 28290198 [TBL] [Abstract][Full Text] [Related]
8. Dual Salt- and Thermoresponsive Programmable Bilayer Hydrogel Actuators with Pseudo-Interpenetrating Double-Network Structures. Xiao S; Zhang M; He X; Huang L; Zhang Y; Ren B; Zhong M; Chang Y; Yang J; Zheng J ACS Appl Mater Interfaces; 2018 Jun; 10(25):21642-21653. PubMed ID: 29878750 [TBL] [Abstract][Full Text] [Related]
9. Multiple-Stimuli-Responsive and Cellulose Conductive Ionic Hydrogel for Smart Wearable Devices and Thermal Actuators. Chen Z; Liu J; Chen Y; Zheng X; Liu H; Li H ACS Appl Mater Interfaces; 2021 Jan; 13(1):1353-1366. PubMed ID: 33351585 [TBL] [Abstract][Full Text] [Related]
10. Microgel-Crosslinked Thermo-Responsive Hydrogel Actuators with High Mechanical Properties and Rapid Response. Yang Y; Xiao Y; Wu X; Deng J; Wei R; Liu A; Chai H; Wang R Macromol Rapid Commun; 2024 Apr; 45(8):e2300643. PubMed ID: 38225681 [TBL] [Abstract][Full Text] [Related]
11. Reversible Shape-Shifting of an Ionic Strength Responsive Hydrogel Enabled by Programmable Network Anisotropy. Wen X; Zhang Y; Chen D; Zhao Q ACS Appl Mater Interfaces; 2022 Sep; 14(35):40344-40350. PubMed ID: 36017981 [TBL] [Abstract][Full Text] [Related]
12. Smart Actuators and Adhesives for Reconfigurable Matter. Ko H; Javey A Acc Chem Res; 2017 Apr; 50(4):691-702. PubMed ID: 28263544 [TBL] [Abstract][Full Text] [Related]
13. Acousto-Photolithography for Programmable Shape Deformation of Composite Hydrogel Sheets. Li M; Mei J; Friend J; Bae J Small; 2022 Nov; 18(47):e2204288. PubMed ID: 36216774 [TBL] [Abstract][Full Text] [Related]
14. One-Pot and One-Step Fabrication of Salt-Responsive Bilayer Hydrogels with 2D and 3D Shape Transformations. He X; Zhang D; Wu J; Wang Y; Chen F; Fan P; Zhong M; Xiao S; Yang J ACS Appl Mater Interfaces; 2019 Jul; 11(28):25417-25426. PubMed ID: 31140780 [TBL] [Abstract][Full Text] [Related]
15. An Anisotropic Hydrogel by Programmable Ionic Crosslinking for Sequential Two-Stage Actuation under Single Stimulus. Zhang Y; Cao X; Zhao Y; Li H; Xiao S; Chen Z; Huang G; Sun Y; Liu Z; He Z Gels; 2023 Mar; 9(4):. PubMed ID: 37102891 [TBL] [Abstract][Full Text] [Related]
16. Salt-Responsive Bilayer Hydrogels with Pseudo-Double-Network Structure Actuated by Polyelectrolyte and Antipolyelectrolyte Effects. Xiao S; Yang Y; Zhong M; Chen H; Zhang Y; Yang J; Zheng J ACS Appl Mater Interfaces; 2017 Jun; 9(24):20843-20851. PubMed ID: 28570039 [TBL] [Abstract][Full Text] [Related]
17. Photothermal-modulated reversible volume transition of wireless hydrogels embedded with redox-responsive carbon dots. Phuong PTM; Jhon H; In I; Park SY Biomater Sci; 2019 Nov; 7(11):4800-4812. PubMed ID: 31528924 [TBL] [Abstract][Full Text] [Related]
18. Thermo- and photo-responsive composite hydrogels with programmed deformations. Wang ZJ; Li CY; Zhao XY; Wu ZL; Zheng Q J Mater Chem B; 2019 Mar; 7(10):1674-1678. PubMed ID: 32254908 [TBL] [Abstract][Full Text] [Related]
19. A programmable bilayer hydrogel actuator based on the asymmetric distribution of crystalline regions. Li X; Cheng Y; Zhang J; Hou Y; Xu X; Liu Q J Mater Chem B; 2021 Dec; 10(1):120-130. PubMed ID: 34889938 [TBL] [Abstract][Full Text] [Related]
20. Shape-Memory Hydrogels: Evolution of Structural Principles To Enable Shape Switching of Hydrophilic Polymer Networks. Löwenberg C; Balk M; Wischke C; Behl M; Lendlein A Acc Chem Res; 2017 Apr; 50(4):723-732. PubMed ID: 28199083 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]