BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

472 related articles for article (PubMed ID: 30311986)

  • 1. Monooxygenation of aromatic compounds by flavin-dependent monooxygenases.
    Chenprakhon P; Wongnate T; Chaiyen P
    Protein Sci; 2019 Jan; 28(1):8-29. PubMed ID: 30311986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenolic hydroxylases.
    Chenprakhon P; Pimviriyakul P; Tongsook C; Chaiyen P
    Enzymes; 2020; 47():283-326. PubMed ID: 32951826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases.
    Ballou DP; Entsch B; Cole LJ
    Biochem Biophys Res Commun; 2005 Dec; 338(1):590-8. PubMed ID: 16236251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning of p
    Pitsawong W; Chenprakhon P; Dhammaraj T; Medhanavyn D; Sucharitakul J; Tongsook C; van Berkel WJH; Chaiyen P; Miller AF
    J Biol Chem; 2020 Mar; 295(12):3965-3981. PubMed ID: 32014994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flavoenzymes catalyzing oxidative aromatic ring-cleavage reactions.
    Chaiyen P
    Arch Biochem Biophys; 2010 Jan; 493(1):62-70. PubMed ID: 19728986
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selectivity of substrate binding and ionization of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase.
    Luanloet T; Sucharitakul J; Chaiyen P
    FEBS J; 2015 Aug; 282(16):3107-25. PubMed ID: 25639849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural insights into a flavin-dependent dehalogenase HadA explain catalysis and substrate inhibition via quadruple π-stacking.
    Pimviriyakul P; Jaruwat A; Chitnumsub P; Chaiyen P
    J Biol Chem; 2021 Aug; 297(2):100952. PubMed ID: 34252455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New frontiers in flavin-dependent monooxygenases.
    Reis RAG; Li H; Johnson M; Sobrado P
    Arch Biochem Biophys; 2021 Mar; 699():108765. PubMed ID: 33460580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigations of two-component flavin-dependent monooxygenase systems.
    Robbins JM; Ellis HR
    Methods Enzymol; 2019; 620():399-422. PubMed ID: 31072495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pH-dependent studies reveal an efficient hydroxylation mechanism of the oxygenase component of p-hydroxyphenylacetate 3-hydroxylase.
    Ruangchan N; Tongsook C; Sucharitakul J; Chaiyen P
    J Biol Chem; 2011 Jan; 286(1):223-33. PubMed ID: 21030590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered Bacterial Flavin-Dependent Monooxygenases for the Regiospecific Hydroxylation of Polycyclic Phenols.
    Herrmann S; Dippe M; Pecher P; Funke E; Pietzsch M; Wessjohann LA
    Chembiochem; 2022 Mar; 23(6):e202100480. PubMed ID: 34979058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. C4a-hydroperoxyflavin formation in N-hydroxylating flavin monooxygenases is mediated by the 2'-OH of the nicotinamide ribose of NADP⁺.
    Robinson R; Badieyan S; Sobrado P
    Biochemistry; 2013 Dec; 52(51):9089-91. PubMed ID: 24321106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic mechanism for the conversion of salicylate into catechol by the flavin-dependent monooxygenase salicylate hydroxylase.
    Costa DMA; Gómez SV; de Araújo SS; Pereira MS; Alves RB; Favaro DC; Hengge AC; Nagem RAP; Brandão TAS
    Int J Biol Macromol; 2019 May; 129():588-600. PubMed ID: 30703421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 4-Hydroxyphenylacetate 3-Hydroxylase (4HPA3H): A Vigorous Monooxygenase for Versatile
    Sun P; Xu S; Tian Y; Chen P; Wu D; Zheng P
    Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38279222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of 8-substituted-FAD analogues to investigate the hydroxylation mechanism of the flavoprotein 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase.
    Chaiyen P; Sucharitakul J; Svasti J; Entsch B; Massey V; Ballou DP
    Biochemistry; 2004 Apr; 43(13):3933-43. PubMed ID: 15049701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The devil is in the details: The chemical basis and mechanistic versatility of flavoprotein monooxygenases.
    Toplak M; Matthews A; Teufel R
    Arch Biochem Biophys; 2021 Feb; 698():108732. PubMed ID: 33358998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unifying and versatile features of flavin-dependent monooxygenases: Diverse catalysis by a common C4a-(hydro)peroxyflavin.
    Phintha A; Chaiyen P
    J Biol Chem; 2023 Dec; 299(12):105413. PubMed ID: 37918809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of free energy relationships to probe the individual steps of hydroxylation of p-hydroxybenzoate hydroxylase: studies with a series of 8-substituted flavins.
    Ortiz-Maldonado M; Ballou DP; Massey V
    Biochemistry; 1999 Jun; 38(25):8124-37. PubMed ID: 10387058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen movements in the oxidative half-reaction of kynurenine 3-monooxygenase from Pseudomonas fluorescens reveal the mechanism of hydroxylation.
    Beaupre BA; Reabe KR; Roman JV; Moran GR
    Arch Biochem Biophys; 2020 Sep; 690():108474. PubMed ID: 32687799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Single-Site Mutation at Ser146 Expands the Reactivity of the Oxygenase Component of p-Hydroxyphenylacetate 3-Hydroxylase.
    Dhammaraj T; Pinthong C; Visitsatthawong S; Tongsook C; Surawatanawong P; Chaiyen P
    ACS Chem Biol; 2016 Oct; 11(10):2889-2896. PubMed ID: 27541707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.