These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30312594)

  • 1. Structural determinants for substrate specificity of flavoenzymes oxidizing d-amino acids.
    Ball J; Gannavaram S; Gadda G
    Arch Biochem Biophys; 2018 Dec; 660():87-96. PubMed ID: 30312594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate dehydrogenation by flavoproteins.
    Fitzpatrick PF
    Acc Chem Res; 2001 Apr; 34(4):299-307. PubMed ID: 11308304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Limited proteolysis and X-ray crystallography reveal the origin of substrate specificity and of the rate-limiting product release during oxidation of D-amino acids catalyzed by mammalian D-amino acid oxidase.
    Vanoni MA; Cosma A; Mazzeo D; Mattevi A; Todone F; Curti B
    Biochemistry; 1997 May; 36(19):5624-32. PubMed ID: 9153402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the active site residues arginine-216 and arginine-237 in the substrate specificity of mammalian D-aspartate oxidase.
    Katane M; Saitoh Y; Maeda K; Hanai T; Sekine M; Furuchi T; Homma H
    Amino Acids; 2011 Feb; 40(2):467-76. PubMed ID: 20567862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties and applications of microbial D-amino acid oxidases: current state and perspectives.
    Pollegioni L; Molla G; Sacchi S; Rosini E; Verga R; Pilone MS
    Appl Microbiol Biotechnol; 2008 Feb; 78(1):1-16. PubMed ID: 18084756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amine oxidation by d-arginine dehydrogenase in Pseudomonas aeruginosa.
    Ouedraogo D; Ball J; Iyer A; Reis RAG; Vodovoz M; Gadda G
    Arch Biochem Biophys; 2017 Oct; 632():192-201. PubMed ID: 28625766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flavoenzymes: diverse catalysts with recurrent features.
    Fraaije MW; Mattevi A
    Trends Biochem Sci; 2000 Mar; 25(3):126-32. PubMed ID: 10694883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering the substrate specificity of D-amino-acid oxidase.
    Sacchi S; Lorenzi S; Molla G; Pilone MS; Rossetti C; Pollegioni L
    J Biol Chem; 2002 Jul; 277(30):27510-6. PubMed ID: 12021281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial d-amino acid oxidases: Recent findings and future perspectives.
    Takahashi S; Abe K; Kera Y
    Bioengineered; 2015; 6(4):237-41. PubMed ID: 25996186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose-methanol-choline superfamily.
    Wongnate T; Chaiyen P
    FEBS J; 2013 Jul; 280(13):3009-27. PubMed ID: 23578136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Breaking the mirror: l-Amino acid deaminase, a novel stereoselective biocatalyst.
    Molla G; Melis R; Pollegioni L
    Biotechnol Adv; 2017 Nov; 35(6):657-668. PubMed ID: 28782586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and kinetic properties of human d-aspartate oxidase, the enzyme-controlling d-aspartate levels in brain.
    Molla G; Chaves-Sanjuan A; Savinelli A; Nardini M; Pollegioni L
    FASEB J; 2020 Jan; 34(1):1182-1197. PubMed ID: 31914658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stereochemistry and accessibility of prosthetic groups in flavoproteins.
    Manstein DJ; Massey V; Ghisla S; Pai EF
    Biochemistry; 1988 Apr; 27(7):2300-5. PubMed ID: 2898258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the role of active site residues of Rhodotorula gracilis D-amino acid oxidase on its substrate specificity.
    Boselli A; Piubelli L; Molla G; Pilone MS; Pollegioni L; Sacchi S
    Biochimie; 2007 Mar; 89(3):360-8. PubMed ID: 17145127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbanion versus hydride transfer mechanisms in flavoprotein-catalyzed dehydrogenations.
    Fitzpatrick PF
    Bioorg Chem; 2004 Jun; 32(3):125-39. PubMed ID: 15110192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological implications of oxidation and unidirectional chiral inversion of D-amino acids.
    Wang YX; Gong N; Xin YF; Hao B; Zhou XJ; Pang CC
    Curr Drug Metab; 2012 Mar; 13(3):321-31. PubMed ID: 22304623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flavoenzymes.
    Joosten V; van Berkel WJ
    Curr Opin Chem Biol; 2007 Apr; 11(2):195-202. PubMed ID: 17275397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification of beef kidney D-aspartate oxidase overexpressed in Escherichia coli and characterization of its redox potentials and oxidative activity towards agonists and antagonists of excitatory amino acid receptors.
    Negri A; Tedeschi G; Ceciliani F; Ronchi S
    Biochim Biophys Acta; 1999 Apr; 1431(1):212-22. PubMed ID: 10209293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active site plasticity in D-amino acid oxidase: a crystallographic analysis.
    Todone F; Vanoni MA; Mozzarelli A; Bolognesi M; Coda A; Curti B; Mattevi A
    Biochemistry; 1997 May; 36(19):5853-60. PubMed ID: 9153426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemical characterization of mouse d-aspartate oxidase.
    Puggioni V; Savinelli A; Miceli M; Molla G; Pollegioni L; Sacchi S
    Biochim Biophys Acta Proteins Proteom; 2020 Oct; 1868(10):140472. PubMed ID: 32553892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.