BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 30312726)

  • 21. Salt-inducible kinase 3 is a novel mitotic regulator and a target for enhancing antimitotic therapeutic-mediated cell death.
    Chen H; Huang S; Han X; Zhang J; Shan C; Tsang YH; Ma HT; Poon RY
    Cell Death Dis; 2014 Apr; 5(4):e1177. PubMed ID: 24743732
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mitotic drug targets.
    Kaestner P; Bastians H
    J Cell Biochem; 2010 Oct; 111(2):258-65. PubMed ID: 20518069
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Maximizing Anticancer Response with MPS1 and CENPE Inhibition Alongside Apoptosis Induction.
    Pinto B; Silva JPN; Silva PMA; Barbosa DJ; Sarmento B; Tavares JC; Bousbaa H
    Pharmaceutics; 2023 Dec; 16(1):. PubMed ID: 38258067
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitotic slippage: an old tale with a new twist.
    Sinha D; Duijf PHG; Khanna KK
    Cell Cycle; 2019 Jan; 18(1):7-15. PubMed ID: 30601084
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cell type variation in responses to antimitotic drugs that target microtubules and kinesin-5.
    Shi J; Orth JD; Mitchison T
    Cancer Res; 2008 May; 68(9):3269-76. PubMed ID: 18451153
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cyclin G1 regulates the outcome of taxane-induced mitotic checkpoint arrest.
    Russell P; Hennessy BT; Li J; Carey MS; Bast RC; Freeman T; Venkitaraman AR
    Oncogene; 2012 May; 31(19):2450-60. PubMed ID: 22056875
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Universal response in the RKO colon cancer cell line to distinct antimitotic therapies.
    Lorz A; Botesteanu DA; Levy D
    Sci Rep; 2018 Jun; 8(1):8979. PubMed ID: 29895957
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The flavonoid eupatorin inactivates the mitotic checkpoint leading to polyploidy and apoptosis.
    Salmela AL; Pouwels J; Kukkonen-Macchi A; Waris S; Toivonen P; Jaakkola K; Mäki-Jouppila J; Kallio L; Kallio MJ
    Exp Cell Res; 2012 Mar; 318(5):578-92. PubMed ID: 22227008
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulating the BCL2 Family to Improve Sensitivity to Microtubule Targeting Agents.
    Whitaker RH; Placzek WJ
    Cells; 2019 Apr; 8(4):. PubMed ID: 31013740
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitosis is not a key target of microtubule agents in patient tumors.
    Komlodi-Pasztor E; Sackett D; Wilkerson J; Fojo T
    Nat Rev Clin Oncol; 2011 Feb; 8(4):244-50. PubMed ID: 21283127
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Clinical Development of Anti-mitotic Drugs in Cancer.
    Olziersky AM; Labidi-Galy SI
    Adv Exp Med Biol; 2017; 1002():125-152. PubMed ID: 28600785
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploiting immune-dependent effects of microtubule-targeting agents to improve efficacy and tolerability of cancer treatment.
    Serpico AF; Visconti R; Grieco D
    Cell Death Dis; 2020 May; 11(5):361. PubMed ID: 32398657
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antiproliferative Fate of the Tetraploid Formed after Mitotic Slippage and Its Promotion; A Novel Target for Cancer Therapy Based on Microtubule Poisons.
    Nakayama Y; Inoue T
    Molecules; 2016 May; 21(5):. PubMed ID: 27213315
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antimitotic drugs in cancer chemotherapy: promises and pitfalls.
    Marzo I; Naval J
    Biochem Pharmacol; 2013 Sep; 86(6):703-10. PubMed ID: 23886991
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel mitotic targets and their small-molecule inhibitors.
    Ivachtchenko AV; Kiselyov AS; Tkachenko SE; Ivanenkov YA; Balakin KV
    Curr Cancer Drug Targets; 2007 Dec; 7(8):766-84. PubMed ID: 18220536
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advances in mitotic inhibitors for cancer treatment.
    Jiang N; Wang X; Yang Y; Dai W
    Mini Rev Med Chem; 2006 Aug; 6(8):885-95. PubMed ID: 16918495
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tumor-Associated Macrophages Suppress the Cytotoxic Activity of Antimitotic Agents.
    Olson OC; Kim H; Quail DF; Foley EA; Joyce JA
    Cell Rep; 2017 Apr; 19(1):101-113. PubMed ID: 28380350
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microtubule-Targeting Agents: Strategies To Hijack the Cytoskeleton.
    Steinmetz MO; Prota AE
    Trends Cell Biol; 2018 Oct; 28(10):776-792. PubMed ID: 29871823
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Post-slippage multinucleation renders cytotoxic variation in anti-mitotic drugs that target the microtubules or mitotic spindle.
    Zhu Y; Zhou Y; Shi J
    Cell Cycle; 2014; 13(11):1756-64. PubMed ID: 24694730
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The hunt for antimitotic agents: an overview of structure-based design strategies.
    Dube D; Tiwari P; Kaur P
    Expert Opin Drug Discov; 2016 Jun; 11(6):579-97. PubMed ID: 27077683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.