BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 30312726)

  • 41. The hunt for antimitotic agents: an overview of structure-based design strategies.
    Dube D; Tiwari P; Kaur P
    Expert Opin Drug Discov; 2016 Jun; 11(6):579-97. PubMed ID: 27077683
    [TBL] [Abstract][Full Text] [Related]  

  • 42. BubR1 is required for a sustained mitotic spindle checkpoint arrest in human cancer cells treated with tubulin-targeting pyrrolo-1,5-benzoxazepines.
    Greene LM; Campiani G; Lawler M; Williams DC; Zisterer DM
    Mol Pharmacol; 2008 Feb; 73(2):419-30. PubMed ID: 17991869
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regulation of cancer cell survival by BCL2 family members upon prolonged mitotic arrest: opportunities for anticancer therapy.
    Barillé-Nion S; Bah N; Véquaud E; Juin P
    Anticancer Res; 2012 Oct; 32(10):4225-33. PubMed ID: 23060542
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Fcp1-Wee1-Cdk1 axis affects spindle assembly checkpoint robustness and sensitivity to antimicrotubule cancer drugs.
    Visconti R; Della Monica R; Palazzo L; D'Alessio F; Raia M; Improta S; Villa MR; Del Vecchio L; Grieco D
    Cell Death Differ; 2015 Sep; 22(9):1551-60. PubMed ID: 25744022
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Decoding the links between mitosis, cancer, and chemotherapy: The mitotic checkpoint, adaptation, and cell death.
    Weaver BA; Cleveland DW
    Cancer Cell; 2005 Jul; 8(1):7-12. PubMed ID: 16023594
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microtubule-Targeting Drugs: More than Antimitotics.
    Kaul R; Risinger AL; Mooberry SL
    J Nat Prod; 2019 Mar; 82(3):680-685. PubMed ID: 30835122
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Novel pyrimidine-2,4-diamine derivative suppresses the cell viability and spindle assembly checkpoint activity by targeting Aurora kinases.
    Salmela AL; Pouwels J; Mäki-Jouppila J; Kohonen P; Toivonen P; Kallio L; Kallio M
    Carcinogenesis; 2013 Feb; 34(2):436-45. PubMed ID: 23104179
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inhibitors targeting mitosis: tales of how great drugs against a promising target were brought down by a flawed rationale.
    Komlodi-Pasztor E; Sackett DL; Fojo AT
    Clin Cancer Res; 2012 Jan; 18(1):51-63. PubMed ID: 22215906
    [TBL] [Abstract][Full Text] [Related]  

  • 49. FOXM1 repression increases mitotic death upon antimitotic chemotherapy through BMF upregulation.
    Vaz S; Ferreira FJ; Macedo JC; Leor G; Ben-David U; Bessa J; Logarinho E
    Cell Death Dis; 2021 May; 12(6):542. PubMed ID: 34035233
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Induction of apoptosis by an inhibitor of the mitotic kinesin KSP requires both activation of the spindle assembly checkpoint and mitotic slippage.
    Tao W; South VJ; Zhang Y; Davide JP; Farrell L; Kohl NE; Sepp-Lorenzino L; Lobell RB
    Cancer Cell; 2005 Jul; 8(1):49-59. PubMed ID: 16023598
    [TBL] [Abstract][Full Text] [Related]  

  • 51. How do anti-mitotic drugs kill cancer cells?
    Gascoigne KE; Taylor SS
    J Cell Sci; 2009 Aug; 122(Pt 15):2579-85. PubMed ID: 19625502
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Co-inhibition of polo-like kinase 1 and Aurora kinases promotes mitotic catastrophe.
    Li J; Hong MJ; Chow JP; Man WY; Mak JP; Ma HT; Poon RY
    Oncotarget; 2015 Apr; 6(11):9327-40. PubMed ID: 25871386
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An update on the developing mitotic inhibitors for the treatment of non-small cell carcinoma.
    Sacco PC; Gridelli C
    Expert Opin Emerg Drugs; 2017 Sep; 22(3):213-222. PubMed ID: 28836854
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Future prospects for mitosis-targeted antitumor therapies.
    Serrano-Del Valle A; Reina-Ortiz C; Benedi A; Anel A; Naval J; Marzo I
    Biochem Pharmacol; 2021 Aug; 190():114655. PubMed ID: 34129859
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Antimitotic sulfonamides inhibit microtubule assembly dynamics and cancer cell proliferation.
    Mohan R; Banerjee M; Ray A; Manna T; Wilson L; Owa T; Bhattacharyya B; Panda D
    Biochemistry; 2006 May; 45(17):5440-9. PubMed ID: 16634625
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Polo-like kinase 1 inhibitors and their potential role in anticancer therapy, with a focus on NSCLC.
    Medema RH; Lin CC; Yang JC
    Clin Cancer Res; 2011 Oct; 17(20):6459-66. PubMed ID: 22003073
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Targeting of tubulin polymerization and induction of mitotic blockage by Methyl 2-(5-fluoro-2-hydroxyphenyl)-1H-benzo[d]imidazole-5-carboxylate (MBIC) in human cervical cancer HeLa cell.
    Hasanpourghadi M; Karthikeyan C; Pandurangan AK; Looi CY; Trivedi P; Kobayashi K; Tanaka K; Wong WF; Mustafa MR
    J Exp Clin Cancer Res; 2016 Mar; 35():58. PubMed ID: 27030360
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tubulin-associated drug targets: Aurora kinases, Polo-like kinases, and others.
    Warner SL; Gray PJ; Von Hoff DD
    Semin Oncol; 2006 Aug; 33(4):436-48. PubMed ID: 16890798
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Novel Eg5 Inhibitor (LY2523355) Causes Mitotic Arrest and Apoptosis in Cancer Cells and Shows Potent Antitumor Activity in Xenograft Tumor Models.
    Ye XS; Fan L; Van Horn RD; Nakai R; Ohta Y; Akinaga S; Murakata C; Yamashita Y; Yin T; Credille KM; Donoho GP; Merzoug FF; Li H; Aggarwal A; Blanchard K; Westin EH
    Mol Cancer Ther; 2015 Nov; 14(11):2463-72. PubMed ID: 26304237
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microtubule dependency of p34cdc2 inactivation and mitotic exit in mammalian cells.
    Andreassen PR; Margolis RL
    J Cell Biol; 1994 Nov; 127(3):789-802. PubMed ID: 7962060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.