BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30312767)

  • 1. Quantitative articular cartilage sub-surface defect assessment using optical coherence tomography: An in-vitro study.
    Michalik R; Pauer T; Brill N; Knobe M; Tingart M; Jahr H; Truhn D; Nebelung S
    Ann Anat; 2019 Jan; 221():125-134. PubMed ID: 30312767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Qualitative and quantitative assessment of cartilage degeneration using full-field optical coherence tomography ex vivo.
    Pailhé R; Mounier A; Boisson B; Rouchy RC; Voros S; Chipon E; Boudry I; Medici M; Hughes C; Moreau-Gaudry A
    Osteoarthritis Cartilage; 2018 Feb; 26(2):285-292. PubMed ID: 29162490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Human cartilage surface characterization by optical coherence tomography.
    Brill N; Riedel J; Schmitt R; Tingart M; Truhn D; Pufe T; Jahr H; Nebelung S
    Phys Med Biol; 2015 Oct; 60(19):7747-62. PubMed ID: 26394374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative OCT and MRI biomarkers for the differentiation of cartilage degeneration.
    Nebelung S; Brill N; Tingart M; Pufe T; Kuhl C; Jahr H; Truhn D
    Skeletal Radiol; 2016 Apr; 45(4):505-16. PubMed ID: 26783011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of characteristics of degenerative joint disease using optical coherence tomography and polarization sensitive optical coherence tomography.
    Xie T; Guo S; Zhang J; Chen Z; Peavy GM
    Lasers Surg Med; 2006 Oct; 38(9):852-65. PubMed ID: 16998913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarization-sensitive optical coherence tomography-based imaging, parameterization, and quantification of human cartilage degeneration.
    Brill N; Wirtz M; Merhof D; Tingart M; Jahr H; Truhn D; Schmitt R; Nebelung S
    J Biomed Opt; 2016 Jul; 21(7):76013. PubMed ID: 27447953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional imaging and analysis of human cartilage degeneration using Optical Coherence Tomography.
    Nebelung S; Brill N; Marx U; Quack V; Tingart M; Schmitt R; Rath B; Jahr H
    J Orthop Res; 2015 May; 33(5):651-9. PubMed ID: 25641346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of ultrasound and optical coherence tomography techniques for evaluation of integrity of spontaneously repaired horse cartilage.
    Virén T; Huang YP; Saarakkala S; Pulkkinen H; Tiitu V; Linjama A; Kiviranta I; Lammi MJ; Brünott A; Brommer H; Van Weeren R; Brama PA; Zheng YP; Jurvelin JS; Töyräs J
    J Med Eng Technol; 2012 Apr; 36(3):185-92. PubMed ID: 22439802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical optical coherence tomography of early articular cartilage degeneration in patients with degenerative meniscal tears.
    Chu CR; Williams A; Tolliver D; Kwoh CK; Bruno S; Irrgang JJ
    Arthritis Rheum; 2010 May; 62(5):1412-20. PubMed ID: 20213801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arthroscopic optical coherence tomography provides detailed information on articular cartilage lesions in horses.
    te Moller NC; Brommer H; Liukkonen J; Virén T; Timonen M; Puhakka PH; Jurvelin JS; van Weeren PR; Töyräs J
    Vet J; 2013 Sep; 197(3):589-95. PubMed ID: 23810744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphometric grading of osteoarthritis by optical coherence tomography--an ex vivo study.
    Nebelung S; Marx U; Brill N; Arbab D; Quack V; Jahr H; Tingart M; Zhou B; Stoffel M; Schmitt R; Rath B
    J Orthop Res; 2014 Oct; 32(10):1381-8. PubMed ID: 24992396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards Optical Coherence Tomography-based elastographic evaluation of human cartilage.
    Nebelung S; Brill N; Müller F; Tingart M; Pufe T; Merhof D; Schmitt R; Jahr H; Truhn D
    J Mech Behav Biomed Mater; 2016 Mar; 56():106-119. PubMed ID: 26700573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contrast enhanced μCT imaging of early articular changes in a pre-clinical model of osteoarthritis.
    Reece DS; Thote T; Lin ASP; Willett NJ; Guldberg RE
    Osteoarthritis Cartilage; 2018 Jan; 26(1):118-127. PubMed ID: 29107695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Chondral and osteochondral defects : Representation by imaging methods].
    Nebelung S; Rath B; Tingart M; Kuhl C; Schrading S
    Orthopade; 2017 Nov; 46(11):894-906. PubMed ID: 28936540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computed Tomography-Mediated Registration of Trapeziometacarpal Articular Cartilage Using Intraarticular Optical Coherence Tomography and Cryomicrotome Imaging: A Cadaver Study.
    Cernohorsky P; Strackee SD; Streekstra GJ; van den Wijngaard JP; Spaan JAE; Siebes M; van Leeuwen TG; de Bruin DM
    Cartilage; 2021 Dec; 13(1_suppl):563S-570S. PubMed ID: 31291745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative MRI of Human Cartilage In Vivo: Relationships with Arthroscopic Indentation Stiffness and Defect Severity.
    Svärd T; Lakovaara M; Pakarinen H; Haapea M; Kiviranta I; Lammentausta E; Jurvelin J; Tervonen O; Ojala R; Nieminen M
    Cartilage; 2018 Jan; 9(1):46-54. PubMed ID: 29219019
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of the optical surface reflection and surface roughness of articular cartilage using optical coherence tomography.
    Saarakkala S; Wang SZ; Huang YP; Zheng YP
    Phys Med Biol; 2009 Nov; 54(22):6837-52. PubMed ID: 19864702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Single-Impact-Induced Cartilage Degeneration by Optical Coherence Tomography.
    de Bont F; Brill N; Schmitt R; Tingart M; Rath B; Pufe T; Jahr H; Nebelung S
    Biomed Res Int; 2015; 2015():486794. PubMed ID: 26229959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semi-automated International Cartilage Repair Society scoring of equine articular cartilage lesions in optical coherence tomography images.
    Te Moller NCR; Pitkänen M; Sarin JK; Väänänen S; Liukkonen J; Afara IO; Puhakka PH; Brommer H; Niemelä T; Tulamo RM; Argüelles Capilla D; Töyräs J
    Equine Vet J; 2017 Jul; 49(4):552-555. PubMed ID: 27592527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison between magnetic resonance imaging, computed tomography, and arthrography to identify artificially induced cartilage defects of the equine carpal joints.
    Suarez Sanchez-Andrade J; Richter H; Kuhn K; Bischofberger AS; Kircher PR; Hoey S
    Vet Radiol Ultrasound; 2018 May; 59(3):312-325. PubMed ID: 29455473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.