These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 30314351)

  • 21. Relationships among resistances to fusarium and Aspergillus ear rots and contamination by fumonisin and aflatoxin in maize.
    Robertson-Hoyt LA; Betrán J; Payne GA; White DG; Isakeit T; Maragos CM; Molnár TL; Holland JB
    Phytopathology; 2007 Mar; 97(3):311-7. PubMed ID: 18943650
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional Study of Lipoxygenase-Mediated Resistance against
    Guche MD; Pilati S; Trenti F; Dalla Costa L; Giorni P; Guella G; Marocco A; Lanubile A
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142806
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fumonisin B(1)-nonproducing strains of Fusarium verticillioides cause maize (Zea mays) ear infection and ear rot.
    Desjardins AE; Plattner RD
    J Agric Food Chem; 2000 Nov; 48(11):5773-80. PubMed ID: 11087553
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In Vitro and in Field Response of Different Fungicides against
    Masiello M; Somma S; Ghionna V; Logrieco AF; Moretti A
    Toxins (Basel); 2019 Jan; 11(1):. PubMed ID: 30609646
    [No Abstract]   [Full Text] [Related]  

  • 25.
    Lanubile A; Giorni P; Bertuzzi T; Marocco A; Battilani P
    Toxins (Basel); 2021 Sep; 13(10):. PubMed ID: 34678972
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptome profiling provides insights into the molecular mechanisms of maize kernel and silk development.
    Li T; Wang Y; Shi Y; Gou X; Yang B; Qu J; Zhang X; Xue J; Xu S
    BMC Genom Data; 2021 Aug; 22(1):28. PubMed ID: 34418952
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative transcriptome profiling and weighted gene co-expression network analysis to identify core genes in maize (
    Kumar A; Kanak KR; Arunachalam A; Dass RS; Lakshmi PTV
    Front Plant Sci; 2022; 13():985396. PubMed ID: 36388593
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fusarium temperatum as a New Species Causing Ear Rot on Maize in Poland.
    Czembor E; Stępień Ł; Waśkiewicz A
    Plant Dis; 2014 Jul; 98(7):1001. PubMed ID: 30708873
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of accelerated style senescence in pathogen defense.
    Valdivia ER; Cosgrove DJ; Stephenson AG
    Am J Bot; 2006 Nov; 93(11):1725-9. PubMed ID: 21642117
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Updating the Methodology of Identifying Maize Hybrids Resistant to Ear Rot Pathogens and Their Toxins-Artificial Inoculation Tests for Kernel Resistance to
    Mesterhazy A; Szieberth D; Toldine ET; Nagy Z; Szabó B; Herczig B; Bors I; Tóth B
    J Fungi (Basel); 2022 Mar; 8(3):. PubMed ID: 35330295
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A New Concept to Secure Food Safety Standards against Fusarium Species and Aspergillus Flavus and Their Toxins in Maize.
    Szabo B; Toth B; Toth Toldine E; Varga M; Kovacs N; Varga J; Kocsube S; Palagyi A; Bagi F; Budakov D; Stojšin V; Lazić S; Bodroža-Solarov M; Čolović R; Bekavac G; Purar B; Jocković D; Mesterházy A
    Toxins (Basel); 2018 Sep; 10(9):. PubMed ID: 30217025
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distribution of disease symptoms and mycotoxins in maize ears infected by Fusarium culmorum and Fusarium graminearum.
    Oldenburg E; Ellner F
    Mycotoxin Res; 2015 Aug; 31(3):117-26. PubMed ID: 25904523
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prospects for reducing fumonisin contamination of maize through genetic modification.
    Duvick J
    Environ Health Perspect; 2001 May; 109 Suppl 2(Suppl 2):337-42. PubMed ID: 11359705
    [TBL] [Abstract][Full Text] [Related]  

  • 34. FUM1--a gene required for fumonisin biosynthesis but not for maize ear rot and ear infection by Gibberella moniliformis in field tests.
    Desjardins AE; Munkvold GP; Plattner RD; Proctor RH
    Mol Plant Microbe Interact; 2002 Nov; 15(11):1157-64. PubMed ID: 12423021
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Population parameters for resistance to Fusarium graminearum and Fusarium verticillioides ear rot among large sets of early, mid-late and late maturing European maize (Zea mays L.) inbred lines.
    Löffler M; Kessel B; Ouzunova M; Miedaner T
    Theor Appl Genet; 2010 Mar; 120(5):1053-62. PubMed ID: 20035317
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioactive metabolites from Stenocarpella maydis, a stalk and ear rot pathogen of maize.
    Wicklow DT; Rogers KD; Dowd PF; Gloer JB
    Fungal Biol; 2011 Feb; 115(2):133-42. PubMed ID: 21315311
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation, Molecular Identification and Mycotoxin Profile of Fusarium Species Isolated from Maize Kernels in Iran.
    Fallahi M; Saremi H; Javan-Nikkhah M; Somma S; Haidukowski M; Logrieco AF; Moretti A
    Toxins (Basel); 2019 May; 11(5):. PubMed ID: 31137699
    [No Abstract]   [Full Text] [Related]  

  • 38. First Report of
    Shang G; Yu H; Yang J; Zeng Z; Hu Z
    Plant Dis; 2020 Dec; ():. PubMed ID: 33373291
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparative Histological and Transcriptional Analysis of Maize Kernels Infected with
    Shu X; Livingston DP; Woloshuk CP; Payne GA
    Front Plant Sci; 2017; 8():2075. PubMed ID: 29270183
    [No Abstract]   [Full Text] [Related]  

  • 40. Microorganisms from corn stigma with biocontrol potential of Fusarium verticillioides.
    Diniz GFD; Figueiredo JEF; Lana UGP; Marins MS; Silva DD; Cota LV; Marriel IE; Oliveira-Paiva CA
    Braz J Biol; 2022; 82():e262567. PubMed ID: 36043660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.