These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
510 related articles for article (PubMed ID: 30314459)
1. Tracing the biosynthetic origin of limonoids and their functional groups through stable isotope labeling and inhibition in neem tree (Azadirachta indica) cell suspension. Aarthy T; Mulani FA; Pandreka A; Kumar A; Nandikol SS; Haldar S; Thulasiram HV BMC Plant Biol; 2018 Oct; 18(1):230. PubMed ID: 30314459 [TBL] [Abstract][Full Text] [Related]
2. Both methylerythritol phosphate and mevalonate pathways contribute to biosynthesis of each of the major isoprenoid classes in young cotton seedlings. Opitz S; Nes WD; Gershenzon J Phytochemistry; 2014 Feb; 98():110-9. PubMed ID: 24359633 [TBL] [Abstract][Full Text] [Related]
3. Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. Hemmerlin A; Hoeffler JF; Meyer O; Tritsch D; Kagan IA; Grosdemange-Billiard C; Rohmer M; Bach TJ J Biol Chem; 2003 Jul; 278(29):26666-76. PubMed ID: 12736259 [TBL] [Abstract][Full Text] [Related]
4. Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of dolichols in plants. Skorupinska-Tudek K; Poznanski J; Wojcik J; Bienkowski T; Szostkiewicz I; Zelman-Femiak M; Bajda A; Chojnacki T; Olszowska O; Grunler J; Meyer O; Rohmer M; Danikiewicz W; Swiezewska E J Biol Chem; 2008 Jul; 283(30):21024-35. PubMed ID: 18502754 [TBL] [Abstract][Full Text] [Related]
5. Limonoid biosynthesis 3: Functional characterization of crucial genes involved in neem limonoid biosynthesis. Pandreka A; Chaya PS; Kumar A; Aarthy T; Mulani FA; Bhagyashree DD; B SH; Jennifer C; Ponnusamy S; Nagegowda D; Thulasiram HV Phytochemistry; 2021 Apr; 184():112669. PubMed ID: 33524856 [TBL] [Abstract][Full Text] [Related]
6. Identification of key enzymes responsible for protolimonoid biosynthesis in plants: Opening the door to azadirachtin production. Hodgson H; De La Peña R; Stephenson MJ; Thimmappa R; Vincent JL; Sattely ES; Osbourn A Proc Natl Acad Sci U S A; 2019 Aug; 116(34):17096-17104. PubMed ID: 31371503 [TBL] [Abstract][Full Text] [Related]
7. Triterpenoid profiling and functional characterization of the initial genes involved in isoprenoid biosynthesis in neem (Azadirachta indica). Pandreka A; Dandekar DS; Haldar S; Uttara V; Vijayshree SG; Mulani FA; Aarthy T; Thulasiram HV BMC Plant Biol; 2015 Sep; 15():214. PubMed ID: 26335498 [TBL] [Abstract][Full Text] [Related]
8. Are iridoids in leaf beetle larvae synthesized de novo or derived from plant precursors? A methodological approach. Søe AR; Bartram S; Gatto N; Boland W Isotopes Environ Health Stud; 2004 Sep; 40(3):175-80. PubMed ID: 15370280 [TBL] [Abstract][Full Text] [Related]
9. Quantification of plant resistance to isoprenoid biosynthesis inhibitors. Perelló C; Rodríguez-Concepción M; Pulido P Methods Mol Biol; 2014; 1153():273-83. PubMed ID: 24777805 [TBL] [Abstract][Full Text] [Related]
10. 6beta-hydroxygedunin from Azadirachta indica. Its potentiation effects with some non-azadirachtin limonoids in neem against lepidopteran larvae. Koul O; Multani JS; Singh G; Daniewski WM; Berlozecki S J Agric Food Chem; 2003 May; 51(10):2937-42. PubMed ID: 12720374 [TBL] [Abstract][Full Text] [Related]
11. Production of Limonoids with Insect Antifeedant Activity in a Two-Stage Bioreactor Process with Cell Suspension Culture of Azadirachta indica. Vásquez-Rivera A; Chicaiza-Finley D; Hoyos RA; Orozco-Sánchez F Appl Biochem Biotechnol; 2015 Sep; 177(2):334-45. PubMed ID: 26234433 [TBL] [Abstract][Full Text] [Related]
12. Investigation of the methylerythritol 4-phosphate pathway for microbial terpenoid production through metabolic control analysis. Volke DC; Rohwer J; Fischer R; Jennewein S Microb Cell Fact; 2019 Nov; 18(1):192. PubMed ID: 31690314 [TBL] [Abstract][Full Text] [Related]
13. Limonoids from neem (Azadirachta indica A. Juss.) are potential anticancer drug candidates. Nagini S; Palrasu M; Bishayee A Med Res Rev; 2024 Mar; 44(2):457-496. PubMed ID: 37589457 [TBL] [Abstract][Full Text] [Related]
14. Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis. Kasahara H; Hanada A; Kuzuyama T; Takagi M; Kamiya Y; Yamaguchi S J Biol Chem; 2002 Nov; 277(47):45188-94. PubMed ID: 12228237 [TBL] [Abstract][Full Text] [Related]
15. Cytotoxic and melanogenesis-inhibitory activities of limonoids from the leaves of Azadirachta indica (Neem). Takagi M; Tachi Y; Zhang J; Shinozaki T; Ishii K; Kikuchi T; Ukiya M; Banno N; Tokuda H; Akihisa T Chem Biodivers; 2014 Mar; 11(3):451-68. PubMed ID: 24634075 [TBL] [Abstract][Full Text] [Related]
17. Transcriptome and metabolite analyses in Azadirachta indica: identification of genes involved in biosynthesis of bioactive triterpenoids. Bhambhani S; Lakhwani D; Gupta P; Pandey A; Dhar YV; Kumar Bag S; Asif MH; Kumar Trivedi P Sci Rep; 2017 Jul; 7(1):5043. PubMed ID: 28698613 [TBL] [Abstract][Full Text] [Related]
18. Different roles of the mevalonate and methylerythritol phosphate pathways in cell growth and tanshinone production of Salvia miltiorrhiza hairy roots. Yang D; Du X; Liang X; Han R; Liang Z; Liu Y; Liu F; Zhao J PLoS One; 2012; 7(11):e46797. PubMed ID: 23209548 [TBL] [Abstract][Full Text] [Related]
19. Methylerythritol and mevalonate pathway contributions to biosynthesis of mono-, sesqui-, and diterpenes in glandular trichomes and leaves of Stevia rebaudiana Bertoni. Wölwer-Rieck U; May B; Lankes C; Wüst M J Agric Food Chem; 2014 Mar; 62(11):2428-35. PubMed ID: 24579920 [TBL] [Abstract][Full Text] [Related]
20. Sterol partitioning by HMGR and DXR for routing intermediates toward withanolide biosynthesis. Singh S; Pal S; Shanker K; Chanotiya CS; Gupta MM; Dwivedi UN; Shasany AK Physiol Plant; 2014 Dec; 152(4):617-33. PubMed ID: 24749735 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]