These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 3031463)

  • 1. Heat shock response of Saccharomyces cerevisiae mutants altered in cyclic AMP-dependent protein phosphorylation.
    Shin DY; Matsumoto K; Iida H; Uno I; Ishikawa T
    Mol Cell Biol; 1987 Jan; 7(1):244-50. PubMed ID: 3031463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. cAMP-independent control of sporulation, glycogen metabolism, and heat shock resistance in S. cerevisiae.
    Cameron S; Levin L; Zoller M; Wigler M
    Cell; 1988 May; 53(4):555-66. PubMed ID: 2836063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of cell division in Saccharomyces cerevisiae mutants defective in adenylate cyclase and cAMP-dependent protein kinase.
    Matsumoto K; Uno I; Ishikawa T
    Exp Cell Res; 1983 Jun; 146(1):151-61. PubMed ID: 6305691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HSP12, a new small heat shock gene of Saccharomyces cerevisiae: analysis of structure, regulation and function.
    Praekelt UM; Meacock PA
    Mol Gen Genet; 1990 Aug; 223(1):97-106. PubMed ID: 2175390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of yeast mutants deficient in adenylate cyclase and cAMP-dependent protein kinase.
    Matsumoto K; Uno I; Oshima Y; Ishikawa T
    Proc Natl Acad Sci U S A; 1982 Apr; 79(7):2355-9. PubMed ID: 6285379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MSI3, a multicopy suppressor of mutants hyperactivated in the RAS-cAMP pathway, encodes a novel HSP70 protein of Saccharomyces cerevisiae.
    Shirayama M; Kawakami K; Matsui Y; Tanaka K; Toh-e A
    Mol Gen Genet; 1993 Sep; 240(3):323-32. PubMed ID: 8413180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of the G1-G0 transition and G0 protein synthesis by cyclic AMP in Saccharomyces cerevisiae.
    Shin DY; Uno I; Ishikawa T
    Curr Genet; 1987; 12(8):577-82. PubMed ID: 2844421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the hsp26 of Saccharomyces cerevisiae.
    Silva JT; Verícimo MA; Floriano WB; Dutra MB; Panek AD
    Biochem Mol Biol Int; 1994 May; 33(2):211-20. PubMed ID: 7951041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermotolerance is independent of induction of the full spectrum of heat shock proteins and of cell cycle blockage in the yeast Saccharomyces cerevisiae.
    Barnes CA; Johnston GC; Singer RA
    J Bacteriol; 1990 Aug; 172(8):4352-8. PubMed ID: 2198254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A heat shock-resistant mutant of Saccharomyces cerevisiae shows constitutive synthesis of two heat shock proteins and altered growth.
    Iida H; Yahara I
    J Cell Biol; 1984 Oct; 99(4 Pt 1):1441-50. PubMed ID: 6384238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of trehalose metabolism in Saccharomyces cerevisiae mutants during temperature shifts.
    Panek AC; Vânia JJ; Paschoalin MF; Panek D
    Biochimie; 1990 Jan; 72(1):77-9. PubMed ID: 2160289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein misfolding and temperature up-shift cause G1 arrest via a common mechanism dependent on heat shock factor in Saccharomycescerevisiae.
    Trotter EW; Berenfeld L; Krause SA; Petsko GA; Gray JV
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7313-8. PubMed ID: 11416208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat shock-mediated cell cycle blockage and G1 cyclin expression in the yeast Saccharomyces cerevisiae.
    Rowley A; Johnston GC; Butler B; Werner-Washburne M; Singer RA
    Mol Cell Biol; 1993 Feb; 13(2):1034-41. PubMed ID: 8380888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of the cAMP pathway by the cell cycle start function, CDC25, in Saccharomyces cerevisiae.
    Tripp ML; Piñon R
    J Gen Microbiol; 1986 May; 132(5):1143-51. PubMed ID: 3021894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo phosphorylation of Saccharomyces cerevisiae ribosomal protein S10 by cyclic-AMP-dependent protein kinase.
    Otaka E; Kumazaki T; Matsumoto K
    J Bacteriol; 1986 Aug; 167(2):713-5. PubMed ID: 3015887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular events associated with acquisition of heat tolerance by the yeast Saccharomyces cerevisiae.
    Piper PW
    FEMS Microbiol Rev; 1993 Aug; 11(4):339-55. PubMed ID: 8398211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative studies between the glucose-induced phosphorylation signal and the heat shock response in mutants of Saccharomyces cerevisiae.
    Panek AD; Ferreira R; Panek AC
    Biochimie; 1989 Mar; 71(3):313-8. PubMed ID: 2545278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Saccharomyces cerevisiae heat shock transcription factor regulates cell wall remodeling in response to heat shock.
    Imazu H; Sakurai H
    Eukaryot Cell; 2005 Jun; 4(6):1050-6. PubMed ID: 15947197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic AMP may not be involved in catabolite repression in Saccharomyces cerevisiae: evidence from mutants unable to synthesize it.
    Matsumoto K; Uno I; Ishikawa T; Oshima Y
    J Bacteriol; 1983 Nov; 156(2):898-900. PubMed ID: 6313623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interdependence of several heat shock gene activations, cyclic AMP decline and changes at the plasma membrane of Saccharomyces cerevisiae.
    Piper P
    Antonie Van Leeuwenhoek; 1990 Oct; 58(3):195-201. PubMed ID: 2175162
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.