These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 30315096)

  • 1. Microtubule structure by cryo-EM: snapshots of dynamic instability.
    Manka SW; Moores CA
    Essays Biochem; 2018 Dec; 62(6):737-751. PubMed ID: 30315096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new protocol to accurately determine microtubule lattice seam location.
    Zhang R; Nogales E
    J Struct Biol; 2015 Nov; 192(2):245-54. PubMed ID: 26424086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of tubulin acetylation and tubulin acetyltransferase binding on microtubule structure.
    Howes SC; Alushin GM; Shida T; Nachury MV; Nogales E
    Mol Biol Cell; 2014 Jan; 25(2):257-66. PubMed ID: 24227885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for the extended CAP-Gly domains of p150(glued) binding to microtubules and the implication for tubulin dynamics.
    Wang Q; Crevenna AH; Kunze I; Mizuno N
    Proc Natl Acad Sci U S A; 2014 Aug; 111(31):11347-52. PubMed ID: 25059720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryo-electron tomography of microtubule-kinesin motor complexes.
    Cope J; Gilbert S; Rayment I; Mastronarde D; Hoenger A
    J Struct Biol; 2010 May; 170(2):257-65. PubMed ID: 20025975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryoelectron microscopy applications in the study of tubulin structure, microtubule architecture, dynamics and assemblies, and interaction of microtubules with motors.
    Downing KH; Nogales E
    Methods Enzymol; 2010; 483():121-42. PubMed ID: 20888472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-curve fitting and tubulin-lattice signal removal for structure determination of large microtubule-based motors.
    Chai P; Rao Q; Zhang K
    J Struct Biol; 2022 Dec; 214(4):107897. PubMed ID: 36089228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microtubule RELION-based pipeline for cryo-EM image processing.
    Cook AD; Manka SW; Wang S; Moores CA; Atherton J
    J Struct Biol; 2020 Jan; 209(1):107402. PubMed ID: 31610239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of tubulin-tubulin lattice contacts in the mechanism of microtubule dynamic instability.
    Manka SW; Moores CA
    Nat Struct Mol Biol; 2018 Jul; 25(7):607-615. PubMed ID: 29967541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational changes in tubulin in GMPCPP and GDP-taxol microtubules observed by cryoelectron microscopy.
    Yajima H; Ogura T; Nitta R; Okada Y; Sato C; Hirokawa N
    J Cell Biol; 2012 Aug; 198(3):315-22. PubMed ID: 22851320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleotide- and Mal3-dependent changes in fission yeast microtubules suggest a structural plasticity view of dynamics.
    von Loeffelholz O; Venables NA; Drummond DR; Katsuki M; Cross R; Moores CA
    Nat Commun; 2017 Dec; 8(1):2110. PubMed ID: 29235477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mal3, the Schizosaccharomyces pombe homolog of EB1, changes the microtubule lattice.
    des Georges A; Katsuki M; Drummond DR; Osei M; Cross RA; Amos LA
    Nat Struct Mol Biol; 2008 Oct; 15(10):1102-8. PubMed ID: 18794845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualizing microtubule structural transitions and interactions with associated proteins.
    Nogales E; Zhang R
    Curr Opin Struct Biol; 2016 Apr; 37():90-6. PubMed ID: 26803284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanisms underlying microtubule growth dynamics.
    Cleary JM; Hancock WO
    Curr Biol; 2021 May; 31(10):R560-R573. PubMed ID: 34033790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution microtubule structures reveal the structural transitions in αβ-tubulin upon GTP hydrolysis.
    Alushin GM; Lander GC; Kellogg EH; Zhang R; Baker D; Nogales E
    Cell; 2014 May; 157(5):1117-29. PubMed ID: 24855948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An electron microscopy journey in the study of microtubule structure and dynamics.
    Nogales E
    Protein Sci; 2015 Dec; 24(12):1912-9. PubMed ID: 26401895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic Origin of Microtubule Dynamic Instability and Its Modulation by EB Proteins.
    Zhang R; Alushin GM; Brown A; Nogales E
    Cell; 2015 Aug; 162(4):849-59. PubMed ID: 26234155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural transitions in the GTP cap visualized by cryo-electron microscopy of catalytically inactive microtubules.
    LaFrance BJ; Roostalu J; Henkin G; Greber BJ; Zhang R; Normanno D; McCollum CO; Surrey T; Nogales E
    Proc Natl Acad Sci U S A; 2022 Jan; 119(2):. PubMed ID: 34996871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extracting Modified Microtubules from Mammalian Cells to Study Microtubule-Protein Complexes by Cryo-Electron Microscopy.
    Bak J; Landskron L; Brummelkamp TR; Perrakis A
    J Vis Exp; 2023 Mar; (193):. PubMed ID: 36939268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microtubule architecture in vitro and in cells revealed by cryo-electron tomography.
    Atherton J; Stouffer M; Francis F; Moores CA
    Acta Crystallogr D Struct Biol; 2018 Jun; 74(Pt 6):572-584. PubMed ID: 29872007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.