These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 30315109)
1. Molecular characterization of the interaction of sialic acid with the periplasmic binding protein from Gangi Setty T; Mowers JC; Hobbs AG; Maiya SP; Syed S; Munson RS; Apicella MA; Subramanian R J Biol Chem; 2018 Dec; 293(52):20073-20084. PubMed ID: 30315109 [TBL] [Abstract][Full Text] [Related]
2. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site. Gangi Setty T; Cho C; Govindappa S; Apicella MA; Ramaswamy S Acta Crystallogr D Biol Crystallogr; 2014 Jul; 70(Pt 7):1801-11. PubMed ID: 25004958 [TBL] [Abstract][Full Text] [Related]
3. The membrane proteins SiaQ and SiaM form an essential stoichiometric complex in the sialic acid tripartite ATP-independent periplasmic (TRAP) transporter SiaPQM (VC1777-1779) from Vibrio cholerae. Mulligan C; Leech AP; Kelly DJ; Thomas GH J Biol Chem; 2012 Jan; 287(5):3598-608. PubMed ID: 22167185 [TBL] [Abstract][Full Text] [Related]
4. Characterization of the N-acetyl-5-neuraminic acid-binding site of the extracytoplasmic solute receptor (SiaP) of nontypeable Haemophilus influenzae strain 2019. Johnston JW; Coussens NP; Allen S; Houtman JC; Turner KH; Zaleski A; Ramaswamy S; Gibson BW; Apicella MA J Biol Chem; 2008 Jan; 283(2):855-65. PubMed ID: 17947229 [TBL] [Abstract][Full Text] [Related]
5. Structural and functional characterization of CMP-N-acetylneuraminate synthetase from Vibrio cholerae. Bose S; Purkait D; Joseph D; Nayak V; Subramanian R Acta Crystallogr D Struct Biol; 2019 Jun; 75(Pt 6):564-577. PubMed ID: 31205019 [TBL] [Abstract][Full Text] [Related]
6. Exploring the Impact of Ketodeoxynonulosonic Acid in Host-Pathogen Interactions Using Uptake and Surface Display by Nontypeable Haemophilus influenzae. Saha S; Coady A; Sasmal A; Kawanishi K; Choudhury B; Yu H; Sorensen RU; Inostroza J; Schoenhofen IC; Chen X; Münster-Kühnel A; Sato C; Kitajima K; Ram S; Nizet V; Varki A mBio; 2021 Jan; 12(1):. PubMed ID: 33468699 [TBL] [Abstract][Full Text] [Related]
7. Conservation of structure and mechanism in primary and secondary transporters exemplified by SiaP, a sialic acid binding virulence factor from Haemophilus influenzae. Müller A; Severi E; Mulligan C; Watts AG; Kelly DJ; Wilson KS; Wilkinson AJ; Thomas GH J Biol Chem; 2006 Aug; 281(31):22212-22222. PubMed ID: 16702222 [TBL] [Abstract][Full Text] [Related]
8. The VC1777-VC1779 proteins are members of a sialic acid-specific subfamily of TRAP transporters (SiaPQM) and constitute the sole route of sialic acid uptake in the human pathogen Vibrio cholerae. Chowdhury N; Norris J; McAlister E; Lau SYK; Thomas GH; Boyd EF Microbiology (Reading); 2012 Aug; 158(Pt 8):2158-2167. PubMed ID: 22556361 [TBL] [Abstract][Full Text] [Related]
10. Biosynthesis of sialylated lipooligosaccharides in Haemophilus ducreyi is dependent on exogenous sialic acid and not mannosamine. Incorporation studies using N-acylmannosamine analogues, N-glycolylneuraminic acid, and 13C-labeled N-acetylneuraminic acid. Schilling B; Goon S; Samuels NM; Gaucher SP; Leary JA; Bertozzi CR; Gibson BW Biochemistry; 2001 Oct; 40(42):12666-77. PubMed ID: 11601991 [TBL] [Abstract][Full Text] [Related]
11. Tripartite ATP-independent Periplasmic (TRAP) Transporters Use an Arginine-mediated Selectivity Filter for High Affinity Substrate Binding. Fischer M; Hopkins AP; Severi E; Hawkhead J; Bawdon D; Watts AG; Hubbard RE; Thomas GH J Biol Chem; 2015 Nov; 290(45):27113-27123. PubMed ID: 26342690 [TBL] [Abstract][Full Text] [Related]
12. Identification of a novel sialic acid transporter in Haemophilus ducreyi. Post DM; Mungur R; Gibson BW; Munson RS Infect Immun; 2005 Oct; 73(10):6727-35. PubMed ID: 16177350 [TBL] [Abstract][Full Text] [Related]
13. Sialic acid transport in Haemophilus influenzae is essential for lipopolysaccharide sialylation and serum resistance and is dependent on a novel tripartite ATP-independent periplasmic transporter. Severi E; Randle G; Kivlin P; Whitfield K; Young R; Moxon R; Kelly D; Hood D; Thomas GH Mol Microbiol; 2005 Nov; 58(4):1173-85. PubMed ID: 16262798 [TBL] [Abstract][Full Text] [Related]
14. Structural and biophysical analysis of a Currie MJ; Davies JS; Scalise M; Gulati A; Wright JD; Newton-Vesty MC; Abeysekera GS; Subramanian R; Wahlgren WY; Friemann R; Allison JR; Mace PD; Griffin MDW; Demeler B; Wakatsuki S; Drew D; Indiveri C; Dobson RCJ; North RA Elife; 2024 Feb; 12():. PubMed ID: 38349818 [TBL] [Abstract][Full Text] [Related]
15. Sialylation of lipooligosaccharides is dispensable for the virulence of Haemophilus ducreyi in humans. Spinola SM; Li W; Fortney KR; Janowicz DM; Zwickl B; Katz BP; Munson RS Infect Immun; 2012 Feb; 80(2):679-87. PubMed ID: 22144477 [TBL] [Abstract][Full Text] [Related]
16. Tripartite ATP-independent periplasmic (TRAP) transporters in bacteria and archaea. Mulligan C; Fischer M; Thomas GH FEMS Microbiol Rev; 2011 Jan; 35(1):68-86. PubMed ID: 20584082 [TBL] [Abstract][Full Text] [Related]
17. Tripartite ATP-Independent Periplasmic (TRAP) Transporters and Tripartite Tricarboxylate Transporters (TTT): From Uptake to Pathogenicity. Rosa LT; Bianconi ME; Thomas GH; Kelly DJ Front Cell Infect Microbiol; 2018; 8():33. PubMed ID: 29479520 [TBL] [Abstract][Full Text] [Related]
18. Transport and catabolism of the sialic acids N-glycolylneuraminic acid and 3-keto-3-deoxy-D-glycero-D-galactonononic acid by Escherichia coli K-12. Hopkins AP; Hawkhead JA; Thomas GH FEMS Microbiol Lett; 2013 Oct; 347(1):14-22. PubMed ID: 23848303 [TBL] [Abstract][Full Text] [Related]
19. PELDOR Spectroscopy Reveals Two Defined States of a Sialic Acid TRAP Transporter SBP in Solution. Glaenzer J; Peter MF; Thomas GH; Hagelueken G Biophys J; 2017 Jan; 112(1):109-120. PubMed ID: 28076802 [TBL] [Abstract][Full Text] [Related]
20. Triggering Closure of a Sialic Acid TRAP Transporter Substrate Binding Protein through Binding of Natural or Artificial Substrates. Peter MF; Gebhardt C; Glaenzer J; Schneberger N; de Boer M; Thomas GH; Cordes T; Hagelueken G J Mol Biol; 2021 Feb; 433(3):166756. PubMed ID: 33316271 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]