These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30315152)

  • 41. Ubiquitination of exposed glycoproteins by SCF
    Yoshida Y; Yasuda S; Fujita T; Hamasaki M; Murakami A; Kawawaki J; Iwai K; Saeki Y; Yoshimori T; Matsuda N; Tanaka K
    Proc Natl Acad Sci U S A; 2017 Aug; 114(32):8574-8579. PubMed ID: 28743755
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The GST-BHMT assay reveals a distinct mechanism underlying proteasome inhibition-induced macroautophagy in mammalian cells.
    Rui YN; Xu Z; Chen Z; Zhang S
    Autophagy; 2015; 11(5):812-32. PubMed ID: 25984893
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Selective autophagy: the rise of the zebrafish model.
    Pant DC; Nazarko TY
    Autophagy; 2021 Nov; 17(11):3297-3305. PubMed ID: 33228439
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Differential ERK activation during autophagy induced by europium hydroxide nanorods and trehalose: Maximum clearance of huntingtin aggregates through combined treatment.
    Wei PF; Jin PP; Barui AK; Hu Y; Zhang L; Zhang JQ; Shi SS; Zhang HR; Lin J; Zhou W; Zhang YJ; Ruan RQ; Patra CR; Wen LP
    Biomaterials; 2015 Dec; 73():160-74. PubMed ID: 26409001
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Distinct effects of methamphetamine on autophagy-lysosome and ubiquitin-proteasome systems in HL-1 cultured mouse atrial cardiomyocytes.
    Funakoshi-Hirose I; Aki T; Unuma K; Funakoshi T; Noritake K; Uemura K
    Toxicology; 2013 Oct; 312():74-82. PubMed ID: 23933405
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neurodegenerative diseases: model organisms, pathology and autophagy.
    Suresh SN; Verma V; Sateesh S; Clement JP; Manjithaya R
    J Genet; 2018 Jul; 97(3):679-701. PubMed ID: 30027903
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CCT2, a newly identified aggrephagy receptor in mammals, specifically mediates the autophagic clearance of solid protein aggregates.
    Zhang Z; Klionsky DJ
    Autophagy; 2022 Jul; 18(7):1483-1485. PubMed ID: 35699934
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Impairment of autophagosome-lysosome fusion in the buff mutant mice with the VPS33A(D251E) mutation.
    Zhen Y; Li W
    Autophagy; 2015; 11(9):1608-22. PubMed ID: 26259518
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regulation of the ischemia-induced autophagy-lysosome processes by nitrosative stress in endothelial cells.
    Han F; Chen YX; Lu YM; Huang JY; Zhang GS; Tao RR; Ji YL; Liao MH; Fukunaga K; Qin ZH
    J Pineal Res; 2011 Aug; 51(1):124-35. PubMed ID: 21392095
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Crosstalk Between the Autophagy-Lysosome Pathway and the Ubiquitin-Proteasome Pathway in Retinal Pigment Epithelial Cells.
    Zhan J; He J; Zhou Y; Wu M; Liu Y; Shang F; Zhang X
    Curr Mol Med; 2016; 16(5):487-95. PubMed ID: 27132793
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The evolutionarily conserved interaction between LC3 and p62 selectively mediates autophagy-dependent degradation of mutant huntingtin.
    Tung YT; Hsu WM; Lee H; Huang WP; Liao YF
    Cell Mol Neurobiol; 2010 Jul; 30(5):795-806. PubMed ID: 20204693
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A switch of chaperonin function regulates the clearance of solid protein aggregates.
    Ma X; Zhang M; Ge L
    Autophagy; 2022 Nov; 18(11):2746-2748. PubMed ID: 35380909
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Correlated cryogenic fluorescence microscopy and electron cryo-tomography shows that exogenous TRIM5α can form hexagonal lattices or autophagy aggregates in vivo.
    Carter SD; Mamede JI; Hope TJ; Jensen GJ
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29702-29711. PubMed ID: 33154161
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A biochemical reconstitution approach to identify autophagy receptors for aggrephagy in mammalian cells.
    Ma X; Zhang W; Deng H; Zhang M; Ge L
    STAR Protoc; 2022 Sep; 3(3):101662. PubMed ID: 36097383
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Protein Aggregates and Aggrephagy in Myopathies.
    Gibertini S; Ruggieri A; Cheli M; Maggi L
    Int J Mol Sci; 2023 May; 24(9):. PubMed ID: 37176163
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Phase Separation in Regulation of Aggrephagy.
    Sun D; Wu R; Li P; Yu L
    J Mol Biol; 2020 Jan; 432(1):160-169. PubMed ID: 31260696
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Only solid waste, please!
    Dormann D; Behrends C
    Mol Cell; 2022 Apr; 82(8):1408-1410. PubMed ID: 35452612
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Monitoring Aggregate Clearance and Formation in Cell-Based Assays.
    Eenjes E; Yang-Klingler YJ; Yamamoto A
    Methods Mol Biol; 2019; 1873():157-169. PubMed ID: 30341608
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Crosstalk Between Mammalian Autophagy and the Ubiquitin-Proteasome System.
    Kocaturk NM; Gozuacik D
    Front Cell Dev Biol; 2018; 6():128. PubMed ID: 30333975
    [TBL] [Abstract][Full Text] [Related]  

  • 60. ZZ-dependent regulation of p62/SQSTM1 in autophagy.
    Zhang Y; Mun SR; Linares JF; Ahn J; Towers CG; Ji CH; Fitzwalter BE; Holden MR; Mi W; Shi X; Moscat J; Thorburn A; Diaz-Meco MT; Kwon YT; Kutateladze TG
    Nat Commun; 2018 Oct; 9(1):4373. PubMed ID: 30349045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.