These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1170 related articles for article (PubMed ID: 30315368)
1. Generative Adversarial Network for Medical Images (MI-GAN). Iqbal T; Ali H J Med Syst; 2018 Oct; 42(11):231. PubMed ID: 30315368 [TBL] [Abstract][Full Text] [Related]
2. Image generation by GAN and style transfer for agar plate image segmentation. Andreini P; Bonechi S; Bianchini M; Mecocci A; Scarselli F Comput Methods Programs Biomed; 2020 Feb; 184():105268. PubMed ID: 31891902 [TBL] [Abstract][Full Text] [Related]
3. End-to-End Adversarial Retinal Image Synthesis. Costa P; Galdran A; Meyer MI; Niemeijer M; Abramoff M; Mendonca AM; Campilho A IEEE Trans Med Imaging; 2018 Mar; 37(3):781-791. PubMed ID: 28981409 [TBL] [Abstract][Full Text] [Related]
4. SpeckleGAN: a generative adversarial network with an adaptive speckle layer to augment limited training data for ultrasound image processing. Bargsten L; Schlaefer A Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1427-1436. PubMed ID: 32556953 [TBL] [Abstract][Full Text] [Related]
5. Semi-supervised segmentation of lesion from breast ultrasound images with attentional generative adversarial network. Han L; Huang Y; Dou H; Wang S; Ahamad S; Luo H; Liu Q; Fan J; Zhang J Comput Methods Programs Biomed; 2020 Jun; 189():105275. PubMed ID: 31978805 [TBL] [Abstract][Full Text] [Related]
6. f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks. Schlegl T; Seeböck P; Waldstein SM; Langs G; Schmidt-Erfurth U Med Image Anal; 2019 May; 54():30-44. PubMed ID: 30831356 [TBL] [Abstract][Full Text] [Related]
7. High-content image generation for drug discovery using generative adversarial networks. Hussain S; Anees A; Das A; Nguyen BP; Marzuki M; Lin S; Wright G; Singhal A Neural Netw; 2020 Dec; 132():353-363. PubMed ID: 32977280 [TBL] [Abstract][Full Text] [Related]
8. Fully automated detection of retinal disorders by image-based deep learning. Li F; Chen H; Liu Z; Zhang X; Wu Z Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422 [TBL] [Abstract][Full Text] [Related]
9. Semi-Supervised Learning for Low-Dose CT Image Restoration with Hierarchical Deep Generative Adversarial Network (HD-GAN). Choi K; Vania M; Kim S Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2683-2686. PubMed ID: 31946448 [TBL] [Abstract][Full Text] [Related]
10. Using deep learning to generate synthetic B-mode musculoskeletal ultrasound images. Cronin NJ; Finni T; Seynnes O Comput Methods Programs Biomed; 2020 Nov; 196():105583. PubMed ID: 32544777 [TBL] [Abstract][Full Text] [Related]
11. Improved automatic detection of herpesvirus secondary envelopment stages in electron microscopy by augmenting training data with synthetic labelled images generated by a generative adversarial network. Shaga Devan K; Walther P; von Einem J; Ropinski T; A Kestler H; Read C Cell Microbiol; 2021 Feb; 23(2):e13280. PubMed ID: 33073426 [TBL] [Abstract][Full Text] [Related]
12. Dehaze of Cataractous Retinal Images Using an Unpaired Generative Adversarial Network. Luo Y; Chen K; Liu L; Liu J; Mao J; Ke G; Sun M IEEE J Biomed Health Inform; 2020 Dec; 24(12):3374-3383. PubMed ID: 32750919 [TBL] [Abstract][Full Text] [Related]
13. Bi-Modality Medical Image Synthesis Using Semi-Supervised Sequential Generative Adversarial Networks. Yang X; Lin Y; Wang Z; Li X; Cheng KT IEEE J Biomed Health Inform; 2020 Mar; 24(3):855-865. PubMed ID: 31217133 [TBL] [Abstract][Full Text] [Related]
14. A novel deep learning conditional generative adversarial network for producing angiography images from retinal fundus photographs. Tavakkoli A; Kamran SA; Hossain KF; Zuckerbrod SL Sci Rep; 2020 Dec; 10(1):21580. PubMed ID: 33299065 [TBL] [Abstract][Full Text] [Related]
15. Synthesizing Depth Hand Images with GANs and Style Transfer for Hand Pose Estimation. He W; Xie Z; Li Y; Wang X; Cai W Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31266251 [TBL] [Abstract][Full Text] [Related]
16. Physics-informed deep generative learning for quantitative assessment of the retina. Brown EE; Guy AA; Holroyd NA; Sweeney PW; Gourmet L; Coleman H; Walsh C; Markaki AE; Shipley R; Rajendram R; Walker-Samuel S Nat Commun; 2024 Aug; 15(1):6859. PubMed ID: 39127778 [TBL] [Abstract][Full Text] [Related]
17. Fundus GAN - GAN-based Fundus Image Synthesis for Training Retinal Image Classifiers. Shenkut D; Bhagavatula V Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():2185-2189. PubMed ID: 36086632 [TBL] [Abstract][Full Text] [Related]
18. iEnhancer-GAN: A Deep Learning Framework in Combination with Word Embedding and Sequence Generative Adversarial Net to Identify Enhancers and Their Strength. Yang R; Wu F; Zhang C; Zhang L Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33808317 [TBL] [Abstract][Full Text] [Related]
19. Learning from adversarial medical images for X-ray breast mass segmentation. Shen T; Gou C; Wang FY; He Z; Chen W Comput Methods Programs Biomed; 2019 Oct; 180():105012. PubMed ID: 31421601 [TBL] [Abstract][Full Text] [Related]
20. SinGAN-Seg: Synthetic training data generation for medical image segmentation. Thambawita V; Salehi P; Sheshkal SA; Hicks SA; Hammer HL; Parasa S; Lange T; Halvorsen P; Riegler MA PLoS One; 2022; 17(5):e0267976. PubMed ID: 35500005 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]