These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 30315909)

  • 1. Model testing for distinctive functional connectivity gradients with resting-state fMRI data.
    O'Rawe JF; Ide JS; Leung HC
    Neuroimage; 2019 Jan; 185():102-110. PubMed ID: 30315909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional parcellation of human and macaque striatum reveals human-specific connectivity in the dorsal caudate.
    Liu X; Eickhoff SB; Caspers S; Wu J; Genon S; Hoffstaedter F; Mars RB; Sommer IE; Eickhoff CR; Chen J; Jardri R; Reetz K; Dogan I; Aleman A; Kogler L; Gruber O; Caspers J; Mathys C; Patil KR
    Neuroimage; 2021 Jul; 235():118006. PubMed ID: 33819611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topographic organization of the human caudate functional connectivity and age-related changes with resting-state fMRI.
    O'Rawe JF; Leung HC
    Front Syst Neurosci; 2022; 16():966433. PubMed ID: 36211593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topographic Mapping as a Basic Principle of Functional Organization for Visual and Prefrontal Functional Connectivity.
    O'Rawe JF; Leung HC
    eNeuro; 2020; 7(1):. PubMed ID: 31988218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing the modulation of resting-state fMRI metrics by baseline physiology.
    Chu PPW; Golestani AM; Kwinta JB; Khatamian YB; Chen JJ
    Neuroimage; 2018 Jun; 173():72-87. PubMed ID: 29452265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping functional gradients of the striatal circuit using simultaneous microelectric stimulation and ultrahigh-field fMRI in non-human primates.
    Han MJ; Park CU; Kang S; Kim B; Nikolaidis A; Milham MP; Hong SJ; Kim SG; Baeg E
    Neuroimage; 2021 Aug; 236():118077. PubMed ID: 33878384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional subdivisions of medial parieto-occipital cortex in humans and nonhuman primates using resting-state fMRI.
    Hutchison RM; Culham JC; Flanagan JR; Everling S; Gallivan JP
    Neuroimage; 2015 Aug; 116():10-29. PubMed ID: 25970649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in structural and functional connectivity among resting-state networks across the human lifespan.
    Betzel RF; Byrge L; He Y; Goñi J; Zuo XN; Sporns O
    Neuroimage; 2014 Nov; 102 Pt 2():345-57. PubMed ID: 25109530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A longitudinal model for functional connectivity networks using resting-state fMRI.
    Hart B; Cribben I; Fiecas M;
    Neuroimage; 2018 Sep; 178():687-701. PubMed ID: 29879474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical power and prediction accuracy in multisite resting-state fMRI connectivity.
    Dansereau C; Benhajali Y; Risterucci C; Pich EM; Orban P; Arnold D; Bellec P
    Neuroimage; 2017 Apr; 149():220-232. PubMed ID: 28161310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resting network is composed of more than one neural pattern: an fMRI study.
    Lee TW; Northoff G; Wu YT
    Neuroscience; 2014 Aug; 274():198-208. PubMed ID: 24881572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data-Driven and Predefined ROI-Based Quantification of Long-Term Resting-State fMRI Reproducibility.
    Song X; Panych LP; Chen NK
    Brain Connect; 2016 Mar; 6(2):136-51. PubMed ID: 26456172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Testing a dual-systems model of adolescent brain development using resting-state connectivity analyses.
    van Duijvenvoorde ACK; Achterberg M; Braams BR; Peters S; Crone EA
    Neuroimage; 2016 Jan; 124(Pt A):409-420. PubMed ID: 25969399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decreased functional connectivity density in pain-related brain regions of female migraine patients without aura.
    Gao Q; Xu F; Jiang C; Chen Z; Chen H; Liao H; Zhao L
    Brain Res; 2016 Feb; 1632():73-81. PubMed ID: 26688226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resting state networks in empirical and simulated dynamic functional connectivity.
    Glomb K; Ponce-Alvarez A; Gilson M; Ritter P; Deco G
    Neuroimage; 2017 Oct; 159():388-402. PubMed ID: 28782678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A probabilistic approach to discovering dynamic full-brain functional connectivity patterns.
    Manning JR; Zhu X; Willke TL; Ranganath R; Stachenfeld K; Hasson U; Blei DM; Norman KA
    Neuroimage; 2018 Oct; 180(Pt A):243-252. PubMed ID: 29448074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Propagating patterns of intrinsic activity along macroscale gradients coordinate functional connections across the whole brain.
    Yousefi B; Keilholz S
    Neuroimage; 2021 May; 231():117827. PubMed ID: 33549755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A three-wave longitudinal study of subcortical-cortical resting-state connectivity in adolescence: Testing age- and puberty-related changes.
    van Duijvenvoorde ACK; Westhoff B; de Vos F; Wierenga LM; Crone EA
    Hum Brain Mapp; 2019 Sep; 40(13):3769-3783. PubMed ID: 31099959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interpreting temporal fluctuations in resting-state functional connectivity MRI.
    Liégeois R; Laumann TO; Snyder AZ; Zhou J; Yeo BTT
    Neuroimage; 2017 Dec; 163():437-455. PubMed ID: 28916180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How restful is it with all that noise? Comparison of Interleaved silent steady state (ISSS) and conventional imaging in resting-state fMRI.
    Andoh J; Ferreira M; Leppert IR; Matsushita R; Pike B; Zatorre RJ
    Neuroimage; 2017 Feb; 147():726-735. PubMed ID: 27902936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.