These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

548 related articles for article (PubMed ID: 30315930)

  • 41. Mitochondrial dysfunction and metabolic reprogramming induce macrophage pro-inflammatory phenotype switch and atherosclerosis progression in aging.
    Vendrov AE; Lozhkin A; Hayami T; Levin J; Silveira Fernandes Chamon J; Abdel-Latif A; Runge MS; Madamanchi NR
    Front Immunol; 2024; 15():1410832. PubMed ID: 38975335
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nox4 NADPH oxidase contributes to smooth muscle cell phenotypes associated with unstable atherosclerotic plaques.
    Xu S; Chamseddine AH; Carrell S; Miller FJ
    Redox Biol; 2014; 2():642-50. PubMed ID: 24936437
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Potential role of insulin receptor isoforms and IGF receptors in plaque instability of human and experimental atherosclerosis.
    Beneit N; Martín-Ventura JL; Rubio-Longás C; Escribano Ó; García-Gómez G; Fernández S; Sesti G; Hribal ML; Egido J; Gómez-Hernández A; Benito M
    Cardiovasc Diabetol; 2018 Feb; 17(1):31. PubMed ID: 29463262
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reactive oxygen species derived from NADPH oxidase 1 and mitochondria mediate angiotensin II-induced smooth muscle cell senescence.
    Tsai IC; Pan ZC; Cheng HP; Liu CH; Lin BT; Jiang MJ
    J Mol Cell Cardiol; 2016 Sep; 98():18-27. PubMed ID: 27381955
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sirt6 deletion in bone marrow-derived cells increases atherosclerosis - Central role of macrophage scavenger receptor 1.
    Arsiwala T; Pahla J; van Tits LJ; Bisceglie L; Gaul DS; Costantino S; Miranda MX; Nussbaum K; Stivala S; Blyszczuk P; Weber J; Tailleux A; Stein S; Paneni F; Beer JH; Greter M; Becher B; Mostoslavsky R; Eriksson U; Staels B; Auwerx J; Hottiger MO; Lüscher TF; Matter CM
    J Mol Cell Cardiol; 2020 Feb; 139():24-32. PubMed ID: 31972266
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Myeloid cell-specific Irf5 deficiency stabilizes atherosclerotic plaques in Apoe
    Leipner J; Dederichs TS; von Ehr A; Rauterberg S; Ehlert C; Merz J; Dufner B; Hoppe N; Krebs K; Heidt T; von Zur Muehlen C; Stachon P; Ley K; Wolf D; Zirlik A; Bode C; Hilgendorf I; Härdtner C
    Mol Metab; 2021 Nov; 53():101250. PubMed ID: 33991749
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Signaling of Serum Amyloid A Through Receptor for Advanced Glycation End Products as a Possible Mechanism for Uremia-Related Atherosclerosis.
    Belmokhtar K; Robert T; Ortillon J; Braconnier A; Vuiblet V; Boulagnon-Rombi C; Diebold MD; Pietrement C; Schmidt AM; Rieu P; Touré F
    Arterioscler Thromb Vasc Biol; 2016 May; 36(5):800-9. PubMed ID: 26988587
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Smooth muscle cell-specific insulin-like growth factor-1 overexpression in Apoe-/- mice does not alter atherosclerotic plaque burden but increases features of plaque stability.
    Shai SY; Sukhanov S; Higashi Y; Vaughn C; Kelly J; Delafontaine P
    Arterioscler Thromb Vasc Biol; 2010 Oct; 30(10):1916-24. PubMed ID: 20671230
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nicotine exacerbates atherosclerosis and plaque instability via NLRP3 inflammasome activation in vascular smooth muscle cells.
    An J; Ouyang L; Yu C; Carr SM; Ramprasath T; Liu Z; Song P; Zou MH; Ding Y
    Theranostics; 2023; 13(9):2825-2842. PubMed ID: 37284455
    [No Abstract]   [Full Text] [Related]  

  • 50. Vascular smooth muscle cell c-Fos is critical for foam cell formation and atherosclerosis.
    Miao G; Zhao X; Chan SL; Zhang L; Li Y; Zhang Y; Zhang L; Wang B
    Metabolism; 2022 Jul; 132():155213. PubMed ID: 35513168
    [TBL] [Abstract][Full Text] [Related]  

  • 51. EphA2 Expression Regulates Inflammation and Fibroproliferative Remodeling in Atherosclerosis.
    Finney AC; Funk SD; Green JM; Yurdagul A; Rana MA; Pistorius R; Henry M; Yurochko A; Pattillo CB; Traylor JG; Chen J; Woolard MD; Kevil CG; Orr AW
    Circulation; 2017 Aug; 136(6):566-582. PubMed ID: 28487392
    [TBL] [Abstract][Full Text] [Related]  

  • 52. SM22α (Smooth Muscle Protein 22-α) Promoter-Driven IGF1R (Insulin-Like Growth Factor 1 Receptor) Deficiency Promotes Atherosclerosis.
    Sukhanov S; Higashi Y; Shai SY; Snarski P; Danchuk S; D'Ambra V; Tabony M; Woods TC; Hou X; Li Z; Ozoe A; Chandrasekar B; Takahashi SI; Delafontaine P
    Arterioscler Thromb Vasc Biol; 2018 Oct; 38(10):2306-2317. PubMed ID: 30354209
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nrf2 in bone marrow-derived cells positively contributes to the advanced stage of atherosclerotic plaque formation.
    Harada N; Ito K; Hosoya T; Mimura J; Maruyama A; Noguchi N; Yagami K; Morito N; Takahashi S; Maher JM; Yamamoto M; Itoh K
    Free Radic Biol Med; 2012 Dec; 53(12):2256-62. PubMed ID: 23051009
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Endogenous p53 protects vascular smooth muscle cells from apoptosis and reduces atherosclerosis in ApoE knockout mice.
    Mercer J; Figg N; Stoneman V; Braganza D; Bennett MR
    Circ Res; 2005 Apr; 96(6):667-74. PubMed ID: 15746445
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Induction of inducible nitric oxide synthase (iNOS) expression by oxLDL inhibits macrophage derived foam cell migration.
    Huang H; Koelle P; Fendler M; Schröttle A; Czihal M; Hoffmann U; Conrad M; Kuhlencordt PJ
    Atherosclerosis; 2014 Jul; 235(1):213-22. PubMed ID: 24858340
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hydrogen sulfide stabilizes atherosclerotic plaques in apolipoprotein E knockout mice.
    Xiong Q; Wang Z; Yu Y; Wen Y; Suguro R; Mao Y; Zhu YZ
    Pharmacol Res; 2019 Jun; 144():90-98. PubMed ID: 30959158
    [TBL] [Abstract][Full Text] [Related]  

  • 57. PKM2-dependent glycolysis promotes the proliferation and migration of vascular smooth muscle cells during atherosclerosis.
    Zhao X; Tan F; Cao X; Cao Z; Li B; Shen Z; Tian Y
    Acta Biochim Biophys Sin (Shanghai); 2020 Jan; 52(1):9-17. PubMed ID: 31867609
    [TBL] [Abstract][Full Text] [Related]  

  • 58. TRAF3IP2 mediates atherosclerotic plaque development and vulnerability in ApoE(-/-) mice.
    Sakamuri SSVP; Higashi Y; Sukhanov S; Siddesha JM; Delafontaine P; Siebenlist U; Chandrasekar B
    Atherosclerosis; 2016 Sep; 252():153-160. PubMed ID: 27237075
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Deletion of angiotensin-converting enzyme 2 promotes the development of atherosclerosis and arterial neointima formation.
    Sahara M; Ikutomi M; Morita T; Minami Y; Nakajima T; Hirata Y; Nagai R; Sata M
    Cardiovasc Res; 2014 Feb; 101(2):236-46. PubMed ID: 24193738
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Absence of Akt1 reduces vascular smooth muscle cell migration and survival and induces features of plaque vulnerability and cardiac dysfunction during atherosclerosis.
    Fernández-Hernando C; József L; Jenkins D; Di Lorenzo A; Sessa WC
    Arterioscler Thromb Vasc Biol; 2009 Dec; 29(12):2033-40. PubMed ID: 19762778
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.