These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 30316002)

  • 1. Computational modelling and experimental validation of drug entrainment in a dry powder inhaler.
    Kopsch T; Murnane D; Symons D
    Int J Pharm; 2018 Dec; 553(1-2):37-46. PubMed ID: 30316002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing the Entrainment Geometry of a Dry Powder Inhaler: Methodology and Preliminary Results.
    Kopsch T; Murnane D; Symons D
    Pharm Res; 2016 Nov; 33(11):2668-79. PubMed ID: 27401410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupled in silico platform: Computational fluid dynamics (CFD) and physiologically-based pharmacokinetic (PBPK) modelling.
    Vulović A; Šušteršič T; Cvijić S; Ibrić S; Filipović N
    Eur J Pharm Sci; 2018 Feb; 113():171-184. PubMed ID: 29054499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deposition and fine particle production during dynamic flow in a dry powder inhaler: a CFD approach.
    Milenkovic J; Alexopoulos AH; Kiparissides C
    Int J Pharm; 2014 Jan; 461(1-2):129-36. PubMed ID: 24296048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of computational fluid dynamics in inhaler design.
    Ruzycki CA; Javaheri E; Finlay WH
    Expert Opin Drug Deliv; 2013 Mar; 10(3):307-23. PubMed ID: 23289401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential and constraints for the application of CFD combined with Lagrangian particle tracking to dry powder inhalers.
    Sommerfeld M; Cui Y; Schmalfuß S
    Eur J Pharm Sci; 2019 Feb; 128():299-324. PubMed ID: 30553814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A personalized medicine approach to the design of dry powder inhalers: Selecting the optimal amount of bypass.
    Kopsch T; Murnane D; Symons D
    Int J Pharm; 2017 Aug; 529(1-2):589-596. PubMed ID: 28743094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards quantitative prediction of the performance of dry powder inhalers by multi-scale simulations and experiments.
    Nguyen D; Remmelgas J; Björn IN; van Wachem B; Thalberg K
    Int J Pharm; 2018 Aug; 547(1-2):31-43. PubMed ID: 29792988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational fluid dynamics (CFD) assisted performance evaluation of the Twincer™ disposable high-dose dry powder inhaler.
    de Boer AH; Hagedoorn P; Woolhouse R; Wynn E
    J Pharm Pharmacol; 2012 Sep; 64(9):1316-25. PubMed ID: 22881443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computationally efficient analysis of particle transport and deposition in a human whole-lung-airway model. Part II: Dry powder inhaler application.
    Kolanjiyil AV; Kleinstreuer C; Sadikot RT
    Comput Biol Med; 2017 May; 84():247-253. PubMed ID: 27836120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing Aerosolization Using Computational Fluid Dynamics in a Pediatric Air-Jet Dry Powder Inhaler.
    Bass K; Farkas D; Longest W
    AAPS PharmSciTech; 2019 Nov; 20(8):329. PubMed ID: 31676991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dry powder inhaler device influence on carrier particle performance.
    Donovan MJ; Kim SH; Raman V; Smyth HD
    J Pharm Sci; 2012 Mar; 101(3):1097-107. PubMed ID: 22095397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of Computational Fluid Dynamics (CFD) Dispersion Parameters in the Development of a New DPI Actuated with Low Air Volumes.
    Longest W; Farkas D; Bass K; Hindle M
    Pharm Res; 2019 May; 36(8):110. PubMed ID: 31139939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validating CFD Predictions of Pharmaceutical Aerosol Deposition with In Vivo Data.
    Tian G; Hindle M; Lee S; Longest PW
    Pharm Res; 2015 Oct; 32(10):3170-87. PubMed ID: 25944585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dry powder inhaler aerosol deposition in a model of tracheobronchial airways: Validating CFD predictions with in vitro data.
    Ahookhosh K; Saidi M; Aminfar H; Mohammadpourfard M; Hamishehkar H; Yaqoubi S
    Int J Pharm; 2020 Sep; 587():119599. PubMed ID: 32663586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer-aided design of dry powder inhalers using computational fluid dynamics to assess performance.
    Suwandecha T; Wongpoowarak W; Srichana T
    Pharm Dev Technol; 2016; 21(1):54-60. PubMed ID: 25265389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the Use of Computational Fluid Dynamics (CFD) Modelling to Design Improved Dry Powder Inhalers.
    Fletcher DF; Chaugule V; Gomes Dos Reis L; Young PM; Traini D; Soria J
    Pharm Res; 2021 Feb; 38(2):277-288. PubMed ID: 33575958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capsule-Based dry powder inhaler evaluation using CFD-DEM simulations and next generation impactor data.
    Almeida LC; Bharadwaj R; Eliahu A; Wassgren CR; Nagapudi K; Muliadi AR
    Eur J Pharm Sci; 2022 Aug; 175():106226. PubMed ID: 35643378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validating Whole-Airway CFD Predictions of DPI Aerosol Deposition at Multiple Flow Rates.
    Longest PW; Tian G; Khajeh-Hosseini-Dalasm N; Hindle M
    J Aerosol Med Pulm Drug Deliv; 2016 Dec; 29(6):461-481. PubMed ID: 27082824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational investigation of particle penetration and deposition pattern in a realistic respiratory tract model from different types of dry powder inhalers.
    Kim YH; Li DD; Park S; Yi DS; Yeoh GH; Abbas A
    Int J Pharm; 2022 Jan; 612():121293. PubMed ID: 34808267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.