These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 30316194)

  • 1. Pyrolysis of palm kernel shell with internal recycling of heavy oil.
    Huang Y; Gao Y; Zhou H; Sun H; Zhou J; Zhang S
    Bioresour Technol; 2019 Jan; 272():77-82. PubMed ID: 30316194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor.
    Morgan TJ; Turn SQ; George A
    PLoS One; 2015; 10(8):e0136511. PubMed ID: 26308860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of bio-based phenolic resin and activated carbon from bio-oil and biochar derived from fast pyrolysis of palm kernel shells.
    Choi GG; Oh SJ; Lee SJ; Kim JS
    Bioresour Technol; 2015 Feb; 178():99-107. PubMed ID: 25227587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of bio-oil rich in acetic acid and phenol from fast pyrolysis of palm residues using a fluidized bed reactor: Influence of activated carbons.
    Jeong JY; Lee UD; Chang WS; Jeong SH
    Bioresour Technol; 2016 Nov; 219():357-364. PubMed ID: 27501032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of palm oil sludge through pyrolysis for bio-oil and bio-char production.
    Thangalazhy-Gopakumar S; Al-Nadheri WMA; Jegarajan D; Sahu JN; Mubarak NM; Nizamuddin S
    Bioresour Technol; 2015 Feb; 178():65-69. PubMed ID: 25278112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenol preparation from catalytic pyrolysis of palm kernel shell at low temperatures.
    Chang G; Miao P; Yan X; Wang G; Guo Q
    Bioresour Technol; 2018 Apr; 253():214-219. PubMed ID: 29351874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic pyrolysis of palm kernel shell waste in a fluidized bed.
    Kim SW; Koo BS; Lee DH
    Bioresour Technol; 2014 Sep; 167():425-32. PubMed ID: 25006017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of pyrolysis bio-oil derived from intermediate pyrolysis of Aegle marmelos de-oiled cake: study on performance and emission characteristics of C.I. engine fueled with Aegle marmelos pyrolysis oil-blends.
    Paramasivam B; Kasimani R; Rajamohan S
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):33806-33819. PubMed ID: 30280334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study on characteristics of the bio-oil from microwave-assisted pyrolysis of lignocellulose and triacylglycerol.
    Dai L; Wang Y; Liu Y; Ruan R; Yu Z; Jiang L
    Sci Total Environ; 2019 Apr; 659():95-100. PubMed ID: 30597473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An experimental study on the formation of methoxyaromatics during pyrolysis of Eucalyptus pulverulenta: Yields and mechanisms.
    Xu J; Tahmasebi A; Yu J
    Bioresour Technol; 2016 Oct; 218():743-50. PubMed ID: 27423035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of catalysts on distribution of polycyclic-aromatic hydrocarbon (PAHs) in bio-oils from the pyrolysis of dewatered sewage sludge at high and low temperatures.
    Hu Y; Yu W; Wibowo H; Xia Y; Lu Y; Yan M
    Sci Total Environ; 2019 Jun; 667():263-270. PubMed ID: 30831366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical characterization of bio-oils using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry.
    Tessarolo NS; dos Santos LR; Silva RS; Azevedo DA
    J Chromatogr A; 2013 Mar; 1279():68-75. PubMed ID: 23357744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast pyrolysis of durian (Durio zibethinus L) shell in a drop-type fixed bed reactor: Pyrolysis behavior and product analyses.
    Tan YL; Abdullah AZ; Hameed BH
    Bioresour Technol; 2017 Nov; 243():85-92. PubMed ID: 28651142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The conversion of chicken manure to bio-oil by fast pyrolysis. III. Analyses of chicken manure, bio-oils and char by Py-FIMS and Py-FDMS.
    Schnitzer MI; Monreal CM; Jandl G
    J Environ Sci Health B; 2008 Jan; 43(1):81-95. PubMed ID: 18161578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic pyrolysis of Alcea pallida stems in a fixed-bed reactor for production of liquid bio-fuels.
    Aysu T
    Bioresour Technol; 2015 Sep; 191():253-62. PubMed ID: 26000835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic co-pyrolysis of sugarcane bagasse and waste high-density polyethylene over faujasite-type zeolite.
    Hassan H; Lim JK; Hameed BH
    Bioresour Technol; 2019 Jul; 284():406-414. PubMed ID: 30965196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrolysis of blend (oil palm biomass and sawdust) biomass using TG-MS.
    Salema AA; Ting RMW; Shang YK
    Bioresour Technol; 2019 Feb; 274():439-446. PubMed ID: 30553084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of coffee industrial residue pyrolysis using distributed activation energy model and components separation of bio-oil by sequencing temperature-raising pyrolysis.
    Chen N; Ren J; Ye Z; Xu Q; Liu J; Sun S
    Bioresour Technol; 2016 Dec; 221():534-540. PubMed ID: 27689350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An analytical characterization study on biofuel obtained from pyrolysis of Madhuca longifolia residues.
    Thiru S; Kola R; Thimmaraju MK; Dhanalakshmi CS; Sharma V; Sakthi P; Maguluri LP; Ranganathan L; Lalvani JIJ
    Sci Rep; 2024 Jun; 14(1):14745. PubMed ID: 38926435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Jute stick pyrolysis for bio-oil production in fluidized bed reactor.
    Asadullah M; Anisur Rahman M; Mohsin Ali M; Abdul Motin M; Borhanus Sultan M; Robiul Alam M; Sahedur Rahman M
    Bioresour Technol; 2008 Jan; 99(1):44-50. PubMed ID: 17267214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.