BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 30316289)

  • 1. Perspective: Crossing the Widom line in no man's land: Experiments, simulations, and the location of the liquid-liquid critical point in supercooled water.
    Hestand NJ; Skinner JL
    J Chem Phys; 2018 Oct; 149(14):140901. PubMed ID: 30316289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Communication: Diffusion constant in supercooled water as the Widom line is crossed in no man's land.
    Ni Y; Hestand NJ; Skinner JL
    J Chem Phys; 2018 May; 148(19):191102. PubMed ID: 30307222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IR spectra of water droplets in no man's land and the location of the liquid-liquid critical point.
    Ni Y; Skinner JL
    J Chem Phys; 2016 Sep; 145(12):124509. PubMed ID: 27782639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ice crystallization in water's "no-man's land".
    Moore EB; Molinero V
    J Chem Phys; 2010 Jun; 132(24):244504. PubMed ID: 20590203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advancing into water's "no man's land": two liquid states?
    Paschek D; Ludwig R
    Angew Chem Int Ed Engl; 2014 Oct; 53(44):11699-701. PubMed ID: 25252122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The anomalies and criticality of liquid water.
    Shi R; Tanaka H
    Proc Natl Acad Sci U S A; 2020 Oct; 117(43):26591-26599. PubMed ID: 33060296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth rate of crystalline ice and the diffusivity of supercooled water from 126 to 262 K.
    Xu Y; Petrik NG; Smith RS; Kay BD; Kimmel GA
    Proc Natl Acad Sci U S A; 2016 Dec; 113(52):14921-14925. PubMed ID: 27956609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Connection between liquid and non-crystalline solid phases in water.
    Martelli F; Leoni F; Sciortino F; Russo J
    J Chem Phys; 2020 Sep; 153(10):104503. PubMed ID: 32933306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for a liquid-liquid critical point in supercooled water within the E3B3 model and a possible interpretation of the kink in the homogeneous nucleation line.
    Ni Y; Skinner JL
    J Chem Phys; 2016 Jun; 144(21):214501. PubMed ID: 27276957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anomalies and Local Structure of Liquid Water from Boiling to the Supercooled Regime as Predicted by the Many-Body MB-pol Model.
    Gartner TE; Hunter KM; Lambros E; Caruso A; Riera M; Medders GR; Panagiotopoulos AZ; Debenedetti PG; Paesani F
    J Phys Chem Lett; 2022 Apr; 13(16):3652-3658. PubMed ID: 35436129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamical crossover and its connection to the Widom line in supercooled TIP4P/Ice water.
    Lupi L; Vázquez Ramírez B; Gallo P
    J Chem Phys; 2021 Aug; 155(5):054502. PubMed ID: 34364341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origin of the emergent fragile-to-strong transition in supercooled water.
    Shi R; Russo J; Tanaka H
    Proc Natl Acad Sci U S A; 2018 Sep; 115(38):9444-9449. PubMed ID: 30181283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural relaxation and crystallization in supercooled water from 170 to 260 K.
    Kringle L; Thornley WA; Kay BD; Kimmel GA
    Proc Natl Acad Sci U S A; 2021 Apr; 118(14):. PubMed ID: 33790015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anomalies in bulk supercooled water at negative pressure.
    Pallares G; El Mekki Azouzi M; González MA; Aragones JL; Abascal JL; Valeriani C; Caupin F
    Proc Natl Acad Sci U S A; 2014 Jun; 111(22):7936-41. PubMed ID: 24843177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water: A Tale of Two Liquids.
    Gallo P; Amann-Winkel K; Angell CA; Anisimov MA; Caupin F; Chakravarty C; Lascaris E; Loerting T; Panagiotopoulos AZ; Russo J; Sellberg JA; Stanley HE; Tanaka H; Vega C; Xu L; Pettersson LG
    Chem Rev; 2016 Jul; 116(13):7463-500. PubMed ID: 27380438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water's two-critical-point scenario in the Ising paradigm.
    Cerdeiriña CA; Troncoso J; González-Salgado D; Debenedetti PG; Stanley HE
    J Chem Phys; 2019 Jun; 150(24):244509. PubMed ID: 31255058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Second inflection point of water surface tension in the deeply supercooled regime revealed by entropy anomaly and surface structure using molecular dynamics simulations.
    Wang X; Binder K; Chen C; Koop T; Pöschl U; Su H; Cheng Y
    Phys Chem Chem Phys; 2019 Feb; 21(6):3360-3369. PubMed ID: 30693356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metastable liquid-liquid transition in a molecular model of water.
    Palmer JC; Martelli F; Liu Y; Car R; Panagiotopoulos AZ; Debenedetti PG
    Nature; 2014 Jun; 510(7505):385-8. PubMed ID: 24943954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Common microscopic structural origin for water's thermodynamic and dynamic anomalies.
    Shi R; Russo J; Tanaka H
    J Chem Phys; 2018 Dec; 149(22):224502. PubMed ID: 30553247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pattern of property extrema in supercooled and stretched water models and a new correlation for predicting the stability limit of the liquid state.
    Uralcan B; Latinwo F; Debenedetti PG; Anisimov MA
    J Chem Phys; 2019 Feb; 150(6):064503. PubMed ID: 30769971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.