These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 30316574)

  • 1. An improved wavelet transform and multi-block forecast engine based on a novel training mechanism.
    Cui J; Li Q; Li X; Xu Z; Lu Z; Zhang B; Berti S
    ISA Trans; 2019 Jan; 84():142-153. PubMed ID: 30316574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new solar power output prediction based on hybrid forecast engine and decomposition model.
    Zhang W; Dang H; Simoes R
    ISA Trans; 2018 Oct; 81():105-120. PubMed ID: 29907300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporating Wind Power Forecast Uncertainties Into Stochastic Unit Commitment Using Neural Network-Based Prediction Intervals.
    Quan H; Srinivasan D; Khosravi A
    IEEE Trans Neural Netw Learn Syst; 2015 Sep; 26(9):2123-35. PubMed ID: 25532191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hybrid wavelet transform based short-term wind speed forecasting approach.
    Wang J
    ScientificWorldJournal; 2014; 2014():914127. PubMed ID: 25136699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forecasting air pollutant concentration using a novel spatiotemporal deep learning model based on clustering, feature selection and empirical wavelet transform.
    Kim J; Wang X; Kang C; Yu J; Li P
    Sci Total Environ; 2021 Dec; 801():149654. PubMed ID: 34416605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-step wind speed forecasting based on a hybrid decomposition technique and an improved back-propagation neural network.
    Sun W; Wang X; Tan B
    Environ Sci Pollut Res Int; 2022 Jul; 29(33):49684-49699. PubMed ID: 35220530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Forecasting of groundwater level fluctuations using ensemble hybrid multi-wavelet neural network-based models.
    Barzegar R; Fijani E; Asghari Moghaddam A; Tziritis E
    Sci Total Environ; 2017 Dec; 599-600():20-31. PubMed ID: 28463698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid prediction model for forecasting wind energy resources.
    Zhang Y; Pan G
    Environ Sci Pollut Res Int; 2020 Jun; 27(16):19428-19446. PubMed ID: 32215801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-short-term power forecast method for the wind farm based on feature selection and temporal convolution network.
    Zha W; Liu J; Li Y; Liang Y
    ISA Trans; 2022 Oct; 129(Pt A):405-414. PubMed ID: 35135683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Innovative second-generation wavelets construction with recurrent neural networks for solar radiation forecasting.
    Capizzi G; Napoli C; Bonanno F
    IEEE Trans Neural Netw Learn Syst; 2012 Nov; 23(11):1805-15. PubMed ID: 24808074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution-Free Probability Density Forecast Through Deep Neural Networks.
    Hu T; Guo Q; Li Z; Shen X; Sun H
    IEEE Trans Neural Netw Learn Syst; 2020 Feb; 31(2):612-625. PubMed ID: 31056521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A combined model for short-term wind speed forecasting based on empirical mode decomposition, feature selection, support vector regression and cross-validated lasso.
    Wang T
    PeerJ Comput Sci; 2021; 7():e732. PubMed ID: 34712801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photovoltaic power prediction based on hybrid modeling of neural network and stochastic differential equation.
    Zhang Y; Kong L
    ISA Trans; 2022 Sep; 128(Pt B):181-206. PubMed ID: 34839904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A universal deep learning approach for modeling the flow of patients under different severities.
    Jiang S; Chin KS; Tsui KL
    Comput Methods Programs Biomed; 2018 Feb; 154():191-203. PubMed ID: 29249343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Future Trend Forecast by Empirical Wavelet Transform and Autoregressive Moving Average.
    Wang Q; Li H; Lin J; Zhang C
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30103391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-step interval prediction of ultra-short-term wind power based on CEEMDAN-FIG and CNN-BiLSTM.
    Zhao Z; Nan H; Liu Z; Yu Y
    Environ Sci Pollut Res Int; 2022 Aug; 29(38):58097-58109. PubMed ID: 35362890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forecasting wind power ramps with prediction coordinates.
    Hirata Y; Amigó JM; Horai S; Ogimoto K; Aihara K
    Chaos; 2021 Oct; 31(10):103105. PubMed ID: 34717328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Intelligent Ensemble Neural Network Model for Wind Speed Prediction in Renewable Energy Systems.
    Ranganayaki V; Deepa SN
    ScientificWorldJournal; 2016; 2016():9293529. PubMed ID: 27034973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Day-Ahead PM
    Wang D; Liu Y; Luo H; Yue C; Cheng S
    Int J Environ Res Public Health; 2017 Jul; 14(7):. PubMed ID: 28704955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Weather forecasting based on data-driven and physics-informed reservoir computing models.
    Mammedov YD; Olugu EU; Farah GA
    Environ Sci Pollut Res Int; 2022 Apr; 29(16):24131-24144. PubMed ID: 34825327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.