BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 3031664)

  • 1. Two promoters, one inducible and one constitutive, control transcription of the Streptomyces lividans galactose operon.
    Fornwald JA; Schmidt FJ; Adams CW; Rosenberg M; Brawner ME
    Proc Natl Acad Sci U S A; 1987 Apr; 84(8):2130-4. PubMed ID: 3031664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene organization and structure of the Streptomyces lividans gal operon.
    Adams CW; Fornwald JA; Schmidt FJ; Rosenberg M; Brawner ME
    J Bacteriol; 1988 Jan; 170(1):203-12. PubMed ID: 3335481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two transcribing activities are involved in expression of the Streptomyces galactose operon.
    Westpheling J; Brawner M
    J Bacteriol; 1989 Mar; 171(3):1355-61. PubMed ID: 2921238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a complex operator for galP1, the glucose-sensitive, galactose-dependent promoter of the Streptomyces galactose operon.
    Mattern SG; Brawner ME; Westpheling J
    J Bacteriol; 1993 Mar; 175(5):1213-20. PubMed ID: 7680340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Streptomyces promoter sequences using the Escherichia coli galactokinase gene.
    Brawner ME; Auerbach JI; Fornwald JA; Rosenberg M; Taylor DP
    Gene; 1985; 40(2-3):191-201. PubMed ID: 3913624
    [TBL] [Abstract][Full Text] [Related]  

  • 6. xylE functions as an efficient reporter gene in Streptomyces spp.: use for the study of galP1, a catabolite-controlled promoter.
    Ingram C; Brawner M; Youngman P; Westpheling J
    J Bacteriol; 1989 Dec; 171(12):6617-24. PubMed ID: 2592344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ccrA1: a mutation in Streptomyces coelicolor that affects the control of catabolite repression.
    Ingram C; Delic I; Westpheling J
    J Bacteriol; 1995 Jun; 177(12):3579-86. PubMed ID: 7768869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning and expression of the Klebsiella pneumoniae galactose operon.
    Peng HL; Fu TF; Liu SF; Chang HY
    J Biochem; 1992 Nov; 112(5):604-8. PubMed ID: 1478918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Galactose utilization in Lactobacillus helveticus: isolation and characterization of the galactokinase (galK) and galactose-1-phosphate uridyl transferase (galT) genes.
    Mollet B; Pilloud N
    J Bacteriol; 1991 Jul; 173(14):4464-73. PubMed ID: 2066342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Galactose and lactose genes from the galactose-positive bacterium Streptococcus salivarius and the phylogenetically related galactose-negative bacterium Streptococcus thermophilus: organization, sequence, transcription, and activity of the gal gene products.
    Vaillancourt K; Moineau S; Frenette M; Lessard C; Vadeboncoeur C
    J Bacteriol; 2002 Feb; 184(3):785-93. PubMed ID: 11790749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Streptomyces galP1 promoter has a novel RNA polymerase recognition sequence and is transcribed by a new form of RNA polymerase in vitro.
    Brawner ME; Mattern SG; Babcock MJ; Westpheling J
    J Bacteriol; 1997 May; 179(10):3222-31. PubMed ID: 9150217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translation of galE and coordination of galactose operon expression in Escherichia coli: effects of insertions and deletions in the non-translated leader sequence.
    Bingham AH; Busby SJ
    Mol Microbiol; 1987 Jul; 1(1):117-24. PubMed ID: 2838723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The gal genes for the Leloir pathway of Lactobacillus casei 64H.
    Bettenbrock K; Alpert CA
    Appl Environ Microbiol; 1998 Jun; 64(6):2013-9. PubMed ID: 9603808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning of the galactokinase gene (galK) from Streptomyces coelicolor A3(2).
    Kendall K; Ali-Dunkrah U; Cullum J
    J Gen Microbiol; 1987 Mar; 133(3):721-5. PubMed ID: 3309168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Escherichia coli gal operon proteins made after prophage lambda induction.
    Merril CR; Gottesman ME; Adhya SL
    J Bacteriol; 1981 Sep; 147(3):875-87. PubMed ID: 6268612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-level inhibition of galK expression by Spot 42: Degradation of mRNA mK2 and enhanced transcription termination before the galK gene.
    Wang X; Ji SC; Jeon HJ; Lee Y; Lim HM
    Proc Natl Acad Sci U S A; 2015 Jun; 112(24):7581-6. PubMed ID: 26045496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Further inducibility of a constitutive system: ultrainduction of the gal operon.
    Tokeson JP; Garges S; Adhya S
    J Bacteriol; 1991 Apr; 173(7):2319-27. PubMed ID: 2007555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbohydrate utilization in Streptococcus thermophilus: characterization of the genes for aldose 1-epimerase (mutarotase) and UDPglucose 4-epimerase.
    Poolman B; Royer TJ; Mainzer SE; Schmidt BF
    J Bacteriol; 1990 Jul; 172(7):4037-47. PubMed ID: 1694527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations that reduce expression from the P2 promoter of the Escherichia coli galactose operon.
    Bingham AH; Ponnambalam S; Chan B; Busby S
    Gene; 1986; 41(1):67-74. PubMed ID: 3516794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous mutations in the galactose operons of Streptomyces coelicolor A3 (2) and Streptomyces lividans 66.
    Ali-Dunkrah U; Kendall K; Cullum J
    J Basic Microbiol; 1990; 30(5):307-12. PubMed ID: 2213532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.