BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 30317145)

  • 1. Renaissance of traditional DNA transfer strategies for improvement of industrial lactic acid bacteria.
    Bron PA; Marcelli B; Mulder J; van der Els S; Morawska LP; Kuipers OP; Kok J; Kleerebezem M
    Curr Opin Biotechnol; 2019 Apr; 56():61-68. PubMed ID: 30317145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR-Cas-mediated gene editing in lactic acid bacteria.
    Song X; Zhang XY; Xiong ZQ; Liu XX; Xia YJ; Wang SJ; Ai LZ
    Mol Biol Rep; 2020 Oct; 47(10):8133-8144. PubMed ID: 32926267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Advances in utilizing the endogenous CRISPR-Cas system for genome editing of lactic acid bacteria].
    Zhu Q; Xu C; Zhang S; Xie N; Pang X; Lü J
    Sheng Wu Gong Cheng Xue Bao; 2022 Jul; 38(7):2447-2458. PubMed ID: 35871616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-Cas systems of lactic acid bacteria and applications in food science.
    Cui Y; Qu X
    Biotechnol Adv; 2024; 71():108323. PubMed ID: 38346597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current and future prospects for CRISPR-based tools in bacteria.
    Luo ML; Leenay RT; Beisel CL
    Biotechnol Bioeng; 2016 May; 113(5):930-43. PubMed ID: 26460902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene Editing in Sorghum Through Agrobacterium.
    Sander JD
    Methods Mol Biol; 2019; 1931():155-168. PubMed ID: 30652289
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Ma X; Wong AS; Tam HY; Tsui SY; Chung DL; Feng B
    Zool Res; 2018 Mar; 39(2):58-71. PubMed ID: 29515088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in CRISPR/Cas9 mediated genome editing in Bacillus subtilis.
    Hong KQ; Liu DY; Chen T; Wang ZW
    World J Microbiol Biotechnol; 2018 Sep; 34(10):153. PubMed ID: 30269229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expanding the Scope of CRISPR/Cpf1-Mediated Genome Editing in Rice.
    Li S; Zhang X; Wang W; Guo X; Wu Z; Du W; Zhao Y; Xia L
    Mol Plant; 2018 Jul; 11(7):995-998. PubMed ID: 29567453
    [No Abstract]   [Full Text] [Related]  

  • 11. Targeted Base Editing Systems Are Available for Plants.
    Marzec M; Hensel G
    Trends Plant Sci; 2018 Nov; 23(11):955-957. PubMed ID: 30224156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Vivo Delivery of CRISPR/Cas9 for Therapeutic Gene Editing: Progress and Challenges.
    Mout R; Ray M; Lee YW; Scaletti F; Rotello VM
    Bioconjug Chem; 2017 Apr; 28(4):880-884. PubMed ID: 28263568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Anti-CRISPR Story: A Battle for Survival.
    Maxwell KL
    Mol Cell; 2017 Oct; 68(1):8-14. PubMed ID: 28985512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of CRISPR-Cas systems in lactic acid bacteria.
    Roberts A; Barrangou R
    FEMS Microbiol Rev; 2020 Sep; 44(5):523-537. PubMed ID: 32433763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR technologies for bacterial systems: Current achievements and future directions.
    Choi KR; Lee SY
    Biotechnol Adv; 2016 Nov; 34(7):1180-1209. PubMed ID: 27566508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods for In Vivo CRISPR/Cas Editing of the Adult Murine Retina.
    Hung SS; Li F; Wang JH; King AE; Bui BV; Liu GS; Hewitt AW
    Methods Mol Biol; 2018; 1715():113-133. PubMed ID: 29188510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-Cas Technologies and Applications in Food Bacteria.
    Stout E; Klaenhammer T; Barrangou R
    Annu Rev Food Sci Technol; 2017 Feb; 8():413-437. PubMed ID: 28245154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and application of CRISPR/Cas9 technologies in genomic editing.
    Zhang C; Quan R; Wang J
    Hum Mol Genet; 2018 Aug; 27(R2):R79-R88. PubMed ID: 29659822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Efficiency Genome Editing of Streptomyces Species by an Engineered CRISPR/Cas System.
    Wang Y; Cobb RE; Zhao H
    Methods Enzymol; 2016; 575():271-84. PubMed ID: 27417933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid Control of Genome Editing in Human Cells by Chemical-Inducible CRISPR-Cas Systems.
    Liu KI; Ramli MNB; Sutrisnoh NB; Tan MH
    Methods Mol Biol; 2018; 1772():267-288. PubMed ID: 29754234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.