These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 30317159)
41. Spatial transcriptome analysis provides insights of key gene(s) involved in steroidal saponin biosynthesis in medicinally important herb Trillium govanianum. Singh P; Singh G; Bhandawat A; Singh G; Parmar R; Seth R; Sharma RK Sci Rep; 2017 Mar; 7():45295. PubMed ID: 28349986 [TBL] [Abstract][Full Text] [Related]
42. Comparative transcriptomic analysis of key genes involved in flavonoid biosynthetic pathway and identification of a flavonol synthase from Artemisia annua L. Liu S; Liu L; Tang Y; Xiong S; Long J; Liu Z; Tian N Plant Biol (Stuttg); 2017 Jul; 19(4):618-629. PubMed ID: 28267260 [TBL] [Abstract][Full Text] [Related]
43. Full-length sequencing of ginkgo transcriptomes for an in-depth understanding of flavonoid and terpenoid trilactone biosynthesis. Sun S; Li Y; Chu L; Kuang X; Song J; Sun C Gene; 2020 Oct; 758():144961. PubMed ID: 32693148 [TBL] [Abstract][Full Text] [Related]
44. Determination of Phytochemical Contents in Extracts from Different Growth Stages of Rojsanga P; Schwaiger S; Stuppner H; Sithisarn P Molecules; 2023 Sep; 28(19):. PubMed ID: 37836680 [TBL] [Abstract][Full Text] [Related]
45. The soybean R2R3 MYB transcription factor GmMYB100 negatively regulates plant flavonoid biosynthesis. Yan J; Wang B; Zhong Y; Yao L; Cheng L; Wu T Plant Mol Biol; 2015 Sep; 89(1-2):35-48. PubMed ID: 26231207 [TBL] [Abstract][Full Text] [Related]
46. Tissue-specific transcriptome for Dendrobium officinale reveals genes involved in flavonoid biosynthesis. Yuan Y; Zhang J; Liu X; Meng M; Wang J; Lin J Genomics; 2020 Mar; 112(2):1781-1794. PubMed ID: 31678153 [TBL] [Abstract][Full Text] [Related]
47. De novo sequencing and comparative analysis of holy and sweet basil transcriptomes. Rastogi S; Meena S; Bhattacharya A; Ghosh S; Shukla RK; Sangwan NS; Lal RK; Gupta MM; Lavania UC; Gupta V; Nagegowda DA; Shasany AK BMC Genomics; 2014 Jul; 15(1):588. PubMed ID: 25015319 [TBL] [Abstract][Full Text] [Related]
48. Comprehensive transcriptome analysis of Crocus sativus for discovery and expression of genes involved in apocarotenoid biosynthesis. Baba SA; Mohiuddin T; Basu S; Swarnkar MK; Malik AH; Wani ZA; Abbas N; Singh AK; Ashraf N BMC Genomics; 2015 Sep; 16(1):698. PubMed ID: 26370545 [TBL] [Abstract][Full Text] [Related]
49. Genome-wide transcriptome variation landscape in Ruta chalepensis organs revealed potential genes responsible for rutin biosynthesis. Abdel-Salam EM; Faisal M; Alatar AA; Qahtan AA; Alam P J Biotechnol; 2021 Jan; 325():43-56. PubMed ID: 33271156 [TBL] [Abstract][Full Text] [Related]
50. Combined transcriptome and metabolome analysis of Nerium indicum L. elaborates the key pathways that are activated in response to witches' broom disease. Wang S; Wang S; Li M; Su Y; Sun Z; Ma H BMC Plant Biol; 2022 Jun; 22(1):291. PubMed ID: 35701735 [TBL] [Abstract][Full Text] [Related]
51. Transcriptional control of flavonoid biosynthesis: fine-tuning of the MYB-bHLH-WD40 (MBW) complex. Li S Plant Signal Behav; 2014; 9(1):e27522. PubMed ID: 24393776 [TBL] [Abstract][Full Text] [Related]
52. De novo transcriptome assembly of the wild relative of tea tree (Camellia taliensis) and comparative analysis with tea transcriptome identified putative genes associated with tea quality and stress response. Zhang HB; Xia EH; Huang H; Jiang JJ; Liu BY; Gao LZ BMC Genomics; 2015 Apr; 16(1):298. PubMed ID: 25881092 [TBL] [Abstract][Full Text] [Related]
53. Metabolomics and transcriptome analysis of the biosynthesis mechanism of flavonoids in the seeds of Euryale ferox Salisb at different developmental stages. Wu P; Liu A; Li L Mol Genet Genomics; 2021 Jul; 296(4):953-970. PubMed ID: 34009475 [TBL] [Abstract][Full Text] [Related]
54. Preparative isolation of flavonoid compounds from Oroxylum indicum by high-speed counter-current chromatography by using ionic liquids as the modifier of two-phase solvent system. Liu R; Xu L; Li A; Sun A J Sep Sci; 2010 Apr; 33(8):1058-63. PubMed ID: 20175085 [TBL] [Abstract][Full Text] [Related]
55. TCP3 interacts with R2R3-MYB proteins, promotes flavonoid biosynthesis and negatively regulates the auxin response in Arabidopsis thaliana. Li S; Zachgo S Plant J; 2013 Dec; 76(6):901-13. PubMed ID: 24118612 [TBL] [Abstract][Full Text] [Related]
56. De novo Assembly of Leaf Transcriptome in the Medicinal Plant Andrographis paniculata. Cherukupalli N; Divate M; Mittapelli SR; Khareedu VR; Vudem DR Front Plant Sci; 2016; 7():1203. PubMed ID: 27582746 [TBL] [Abstract][Full Text] [Related]
57. De novo assembly and characterization of root transcriptome in two distinct morphotypes of vetiver, Chrysopogon zizaniodes (L.) Roberty. Chakrabarty D; Chauhan PS; Chauhan AS; Indoliya Y; Lavania UC; Nautiyal CS Sci Rep; 2015 Dec; 5():18630. PubMed ID: 26679063 [TBL] [Abstract][Full Text] [Related]
58. De novo assembly and functional annotation of Myrciaria dubia fruit transcriptome reveals multiple metabolic pathways for L-ascorbic acid biosynthesis. Castro JC; Maddox JD; Cobos M; Requena D; Zimic M; Bombarely A; Imán SA; Cerdeira LA; Medina AE BMC Genomics; 2015 Nov; 16():997. PubMed ID: 26602763 [TBL] [Abstract][Full Text] [Related]
59. Global Transcriptome Analyses Reveal Differentially Expressed Genes of Six Organs and Putative Genes Involved in (Iso)flavonoid Biosynthesis in Tian M; Zhang X; Zhu Y; Xie G; Qin M Front Plant Sci; 2018; 9():1160. PubMed ID: 30154811 [No Abstract] [Full Text] [Related]
60. Transcriptome profiling shows gene regulation patterns in a flavonoid pathway in response to exogenous phenylalanine in Boesenbergia rotunda cell culture. Md-Mustafa ND; Khalid N; Gao H; Peng Z; Alimin MF; Bujang N; Ming WS; Mohd-Yusuf Y; Harikrishna JA; Othman RY BMC Genomics; 2014 Nov; 15(1):984. PubMed ID: 25407215 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]